Loading…

State Estimation and Voltage/VAR Control in Distribution Network With Intermittent Measurements

Reactive power injection in smart grid distribution networks via distributed generators is envisioned to play a vital role in voltage/VAR support. In this paper, we integrate the three aspects of voltage/VAR support: modeling, state estimation and network control in a single framework. Firstly, we d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2014-01, Vol.5 (1), p.200-209
Main Authors: Deshmukh, Siddharth, Natarajan, Balasubramaniam, Pahwa, Anil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-e49320417d632cefd772f36574774309fad0a7c774ee6834de0cc3836d2fbdff3
cites cdi_FETCH-LOGICAL-c310t-e49320417d632cefd772f36574774309fad0a7c774ee6834de0cc3836d2fbdff3
container_end_page 209
container_issue 1
container_start_page 200
container_title IEEE transactions on smart grid
container_volume 5
creator Deshmukh, Siddharth
Natarajan, Balasubramaniam
Pahwa, Anil
description Reactive power injection in smart grid distribution networks via distributed generators is envisioned to play a vital role in voltage/VAR support. In this paper, we integrate the three aspects of voltage/VAR support: modeling, state estimation and network control in a single framework. Firstly, we develop an input to state nonlinear dynamic model that incorporates power flow equations along with load and distributed generation (DG) forecasts. Then, considering an extended Kalman filter (EKF) approach for nonlinear state estimation, we analyze the impact of dropped packets on stability of estimation process. Finally, we apply separation principle locally around some known state estimates, to design a nonlinear model predictive control (NMPC) based voltage/VAR support strategy. The control problem aims to minimize the aggregate reactive power injected by DG with the following constraints: 1) voltage regulation; 2) phase imbalance correction; and 3) maximum and minimum reactive power injection by individual generators. Considering computational complexity incurred in search for the optimal solution for large scale nonlinear control problems, we propose a successive time varying linear (STVL) approximation to our voltage/VAR control problem. The control framework approach and the analytical results presented in this paper are validated by simulating a radial distribution network as an example.
doi_str_mv 10.1109/TSG.2013.2288142
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2013_2288142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6683094</ieee_id><sourcerecordid>10_1109_TSG_2013_2288142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-e49320417d632cefd772f36574774309fad0a7c774ee6834de0cc3836d2fbdff3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiQS5m3jpH1hoO2V3eySIQIKaCOJxU7ZTrcKuaUuM_94ihLnMm-S9l8xHyC1nfc6ZGqyW075gHPpClCWX4oJ0uJIqA5bzy7MewjXphfDJ0gBALlSHVMuoI9JJiG6no2sbqhtD1-026nccrEcvdNw20bdb6hp670L0brP_9z1h_Gn9F31z8YPOm4h-52LEJtJH1GHvcZd0uCFXVm8D9k67S14fJqvxLFs8T-fj0SKrgbOYoVQgmOSFyUHUaE1RCAv5sJBFIYEpqw3TRZ0OxLwEaZDVNZSQG2E3xlroEnbsrX0bgkdbffv0kf-tOKsOjKrEqDowqk6MUuTuGHGIeLbnqZ4pCX_3s2PB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>State Estimation and Voltage/VAR Control in Distribution Network With Intermittent Measurements</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Deshmukh, Siddharth ; Natarajan, Balasubramaniam ; Pahwa, Anil</creator><creatorcontrib>Deshmukh, Siddharth ; Natarajan, Balasubramaniam ; Pahwa, Anil</creatorcontrib><description>Reactive power injection in smart grid distribution networks via distributed generators is envisioned to play a vital role in voltage/VAR support. In this paper, we integrate the three aspects of voltage/VAR support: modeling, state estimation and network control in a single framework. Firstly, we develop an input to state nonlinear dynamic model that incorporates power flow equations along with load and distributed generation (DG) forecasts. Then, considering an extended Kalman filter (EKF) approach for nonlinear state estimation, we analyze the impact of dropped packets on stability of estimation process. Finally, we apply separation principle locally around some known state estimates, to design a nonlinear model predictive control (NMPC) based voltage/VAR support strategy. The control problem aims to minimize the aggregate reactive power injected by DG with the following constraints: 1) voltage regulation; 2) phase imbalance correction; and 3) maximum and minimum reactive power injection by individual generators. Considering computational complexity incurred in search for the optimal solution for large scale nonlinear control problems, we propose a successive time varying linear (STVL) approximation to our voltage/VAR control problem. The control framework approach and the analytical results presented in this paper are validated by simulating a radial distribution network as an example.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2013.2288142</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrices ; Distributed generation ; Kalman filter ; Load modeling ; nonlinear control ; power distribution system ; Reactive power ; State estimation ; Vectors ; Voltage control ; Voltage measurement</subject><ispartof>IEEE transactions on smart grid, 2014-01, Vol.5 (1), p.200-209</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-e49320417d632cefd772f36574774309fad0a7c774ee6834de0cc3836d2fbdff3</citedby><cites>FETCH-LOGICAL-c310t-e49320417d632cefd772f36574774309fad0a7c774ee6834de0cc3836d2fbdff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6683094$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Deshmukh, Siddharth</creatorcontrib><creatorcontrib>Natarajan, Balasubramaniam</creatorcontrib><creatorcontrib>Pahwa, Anil</creatorcontrib><title>State Estimation and Voltage/VAR Control in Distribution Network With Intermittent Measurements</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Reactive power injection in smart grid distribution networks via distributed generators is envisioned to play a vital role in voltage/VAR support. In this paper, we integrate the three aspects of voltage/VAR support: modeling, state estimation and network control in a single framework. Firstly, we develop an input to state nonlinear dynamic model that incorporates power flow equations along with load and distributed generation (DG) forecasts. Then, considering an extended Kalman filter (EKF) approach for nonlinear state estimation, we analyze the impact of dropped packets on stability of estimation process. Finally, we apply separation principle locally around some known state estimates, to design a nonlinear model predictive control (NMPC) based voltage/VAR support strategy. The control problem aims to minimize the aggregate reactive power injected by DG with the following constraints: 1) voltage regulation; 2) phase imbalance correction; and 3) maximum and minimum reactive power injection by individual generators. Considering computational complexity incurred in search for the optimal solution for large scale nonlinear control problems, we propose a successive time varying linear (STVL) approximation to our voltage/VAR control problem. The control framework approach and the analytical results presented in this paper are validated by simulating a radial distribution network as an example.</description><subject>Covariance matrices</subject><subject>Distributed generation</subject><subject>Kalman filter</subject><subject>Load modeling</subject><subject>nonlinear control</subject><subject>power distribution system</subject><subject>Reactive power</subject><subject>State estimation</subject><subject>Vectors</subject><subject>Voltage control</subject><subject>Voltage measurement</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQhRujiQS5m3jpH1hoO2V3eySIQIKaCOJxU7ZTrcKuaUuM_94ihLnMm-S9l8xHyC1nfc6ZGqyW075gHPpClCWX4oJ0uJIqA5bzy7MewjXphfDJ0gBALlSHVMuoI9JJiG6no2sbqhtD1-026nccrEcvdNw20bdb6hp670L0brP_9z1h_Gn9F31z8YPOm4h-52LEJtJH1GHvcZd0uCFXVm8D9k67S14fJqvxLFs8T-fj0SKrgbOYoVQgmOSFyUHUaE1RCAv5sJBFIYEpqw3TRZ0OxLwEaZDVNZSQG2E3xlroEnbsrX0bgkdbffv0kf-tOKsOjKrEqDowqk6MUuTuGHGIeLbnqZ4pCX_3s2PB</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Deshmukh, Siddharth</creator><creator>Natarajan, Balasubramaniam</creator><creator>Pahwa, Anil</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201401</creationdate><title>State Estimation and Voltage/VAR Control in Distribution Network With Intermittent Measurements</title><author>Deshmukh, Siddharth ; Natarajan, Balasubramaniam ; Pahwa, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-e49320417d632cefd772f36574774309fad0a7c774ee6834de0cc3836d2fbdff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Covariance matrices</topic><topic>Distributed generation</topic><topic>Kalman filter</topic><topic>Load modeling</topic><topic>nonlinear control</topic><topic>power distribution system</topic><topic>Reactive power</topic><topic>State estimation</topic><topic>Vectors</topic><topic>Voltage control</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshmukh, Siddharth</creatorcontrib><creatorcontrib>Natarajan, Balasubramaniam</creatorcontrib><creatorcontrib>Pahwa, Anil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshmukh, Siddharth</au><au>Natarajan, Balasubramaniam</au><au>Pahwa, Anil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State Estimation and Voltage/VAR Control in Distribution Network With Intermittent Measurements</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2014-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>200</spage><epage>209</epage><pages>200-209</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Reactive power injection in smart grid distribution networks via distributed generators is envisioned to play a vital role in voltage/VAR support. In this paper, we integrate the three aspects of voltage/VAR support: modeling, state estimation and network control in a single framework. Firstly, we develop an input to state nonlinear dynamic model that incorporates power flow equations along with load and distributed generation (DG) forecasts. Then, considering an extended Kalman filter (EKF) approach for nonlinear state estimation, we analyze the impact of dropped packets on stability of estimation process. Finally, we apply separation principle locally around some known state estimates, to design a nonlinear model predictive control (NMPC) based voltage/VAR support strategy. The control problem aims to minimize the aggregate reactive power injected by DG with the following constraints: 1) voltage regulation; 2) phase imbalance correction; and 3) maximum and minimum reactive power injection by individual generators. Considering computational complexity incurred in search for the optimal solution for large scale nonlinear control problems, we propose a successive time varying linear (STVL) approximation to our voltage/VAR control problem. The control framework approach and the analytical results presented in this paper are validated by simulating a radial distribution network as an example.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2013.2288142</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2014-01, Vol.5 (1), p.200-209
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2013_2288142
source IEEE Electronic Library (IEL) Journals
subjects Covariance matrices
Distributed generation
Kalman filter
Load modeling
nonlinear control
power distribution system
Reactive power
State estimation
Vectors
Voltage control
Voltage measurement
title State Estimation and Voltage/VAR Control in Distribution Network With Intermittent Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20Estimation%20and%20Voltage/VAR%20Control%20in%20Distribution%20Network%20With%20Intermittent%20Measurements&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Deshmukh,%20Siddharth&rft.date=2014-01&rft.volume=5&rft.issue=1&rft.spage=200&rft.epage=209&rft.pages=200-209&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2013.2288142&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSG_2013_2288142%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-e49320417d632cefd772f36574774309fad0a7c774ee6834de0cc3836d2fbdff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6683094&rfr_iscdi=true