Loading…

Inverter-Less Hybrid Voltage/Var Control for Distribution Circuits With Photovoltaic Generators

This paper proposes a hybrid voltage/var control (VVC) architecture for distribution systems with a high PV penetration. The architecture consists of two control loops: coordinated normal control loop and uncoordinated transient cloud movement control loop. In the first loop, hourly dispatches are s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2014-11, Vol.5 (6), p.2718-2728
Main Authors: Zhaoyu Wang, Hao Chen, Jianhui Wang, Begovic, Miroslav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-ab662b92628dbf1e4bd31c8220ff4ba3d1d2f62a32a8130200aab0382d5f20933
cites cdi_FETCH-LOGICAL-c408t-ab662b92628dbf1e4bd31c8220ff4ba3d1d2f62a32a8130200aab0382d5f20933
container_end_page 2728
container_issue 6
container_start_page 2718
container_title IEEE transactions on smart grid
container_volume 5
creator Zhaoyu Wang
Hao Chen
Jianhui Wang
Begovic, Miroslav
description This paper proposes a hybrid voltage/var control (VVC) architecture for distribution systems with a high PV penetration. The architecture consists of two control loops: coordinated normal control loop and uncoordinated transient cloud movement control loop. In the first loop, hourly dispatches are scheduled for on-load tap changer (OLTC), capacitor banks (CBs), and static var compensators (SVCs) based on forecasted load and PV power output so as to minimize power losses and voltage deviations. The second loop is triggered when large variations of PV power output caused by rapid cloud movement happen. All SVCs and CBs become self-controlled based on local voltage measurements with the single control objective to minimize voltage deviations. SVCs will operate firstly to flatten the voltage profile. If SVCs fail, CBs will switch to provide reactive power support. A time-adaptive delay is applied to each CB to avoid overcompensation. Case studies show the proposed method can optimize the system operation and is effective in voltage regulation with PV generators.
doi_str_mv 10.1109/TSG.2014.2324569
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2014_2324569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6895183</ieee_id><sourcerecordid>3932007571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ab662b92628dbf1e4bd31c8220ff4ba3d1d2f62a32a8130200aab0382d5f20933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsGjvgpeA523zsZsmR1m1LRQUrPUYkt3EptRNnWQL_fduaelc3jk87ww8WfZA8IgQLMfLz-mIYlKMKKNFyeVVNiCykDnDnFxf9pLdZsMYN7gfxhincpCpebu3kCzkCxsjmh0M-AatwjbpHzteaUBVaBOELXIB0IuPCbzpkg8tqjzUnU8Rffu0Rh_rkML-2PM1mtrWgk4B4n124_Q22uE577Kvt9dlNcsX79N59bzI6wKLlGvDOTWScioa44gtTMNILSjFzhVGs4Y01HGqGdWCMEwx1tpgJmhTOoolY3fZ0-nuDsJfZ2NSm9BB279UZFLKEk8YFj2FT1QNIUawTu3A_2o4KILV0aTqTaqjSXU22VceTxVvrb3gXMiSCMb-AR-xb2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759507308</pqid></control><display><type>article</type><title>Inverter-Less Hybrid Voltage/Var Control for Distribution Circuits With Photovoltaic Generators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhaoyu Wang ; Hao Chen ; Jianhui Wang ; Begovic, Miroslav</creator><creatorcontrib>Zhaoyu Wang ; Hao Chen ; Jianhui Wang ; Begovic, Miroslav</creatorcontrib><description>This paper proposes a hybrid voltage/var control (VVC) architecture for distribution systems with a high PV penetration. The architecture consists of two control loops: coordinated normal control loop and uncoordinated transient cloud movement control loop. In the first loop, hourly dispatches are scheduled for on-load tap changer (OLTC), capacitor banks (CBs), and static var compensators (SVCs) based on forecasted load and PV power output so as to minimize power losses and voltage deviations. The second loop is triggered when large variations of PV power output caused by rapid cloud movement happen. All SVCs and CBs become self-controlled based on local voltage measurements with the single control objective to minimize voltage deviations. SVCs will operate firstly to flatten the voltage profile. If SVCs fail, CBs will switch to provide reactive power support. A time-adaptive delay is applied to each CB to avoid overcompensation. Case studies show the proposed method can optimize the system operation and is effective in voltage regulation with PV generators.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2014.2324569</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Distributed generators ; Distributed power generation ; distribution systems ; Electricity distribution ; Loops ; photovoltaic (PV) generation ; Photovoltaic systems ; Reactive power ; reactive power control ; Transient analysis ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2014-11, Vol.5 (6), p.2718-2728</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ab662b92628dbf1e4bd31c8220ff4ba3d1d2f62a32a8130200aab0382d5f20933</citedby><cites>FETCH-LOGICAL-c408t-ab662b92628dbf1e4bd31c8220ff4ba3d1d2f62a32a8130200aab0382d5f20933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6895183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Zhaoyu Wang</creatorcontrib><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Jianhui Wang</creatorcontrib><creatorcontrib>Begovic, Miroslav</creatorcontrib><title>Inverter-Less Hybrid Voltage/Var Control for Distribution Circuits With Photovoltaic Generators</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This paper proposes a hybrid voltage/var control (VVC) architecture for distribution systems with a high PV penetration. The architecture consists of two control loops: coordinated normal control loop and uncoordinated transient cloud movement control loop. In the first loop, hourly dispatches are scheduled for on-load tap changer (OLTC), capacitor banks (CBs), and static var compensators (SVCs) based on forecasted load and PV power output so as to minimize power losses and voltage deviations. The second loop is triggered when large variations of PV power output caused by rapid cloud movement happen. All SVCs and CBs become self-controlled based on local voltage measurements with the single control objective to minimize voltage deviations. SVCs will operate firstly to flatten the voltage profile. If SVCs fail, CBs will switch to provide reactive power support. A time-adaptive delay is applied to each CB to avoid overcompensation. Case studies show the proposed method can optimize the system operation and is effective in voltage regulation with PV generators.</description><subject>Algorithm design and analysis</subject><subject>Distributed generators</subject><subject>Distributed power generation</subject><subject>distribution systems</subject><subject>Electricity distribution</subject><subject>Loops</subject><subject>photovoltaic (PV) generation</subject><subject>Photovoltaic systems</subject><subject>Reactive power</subject><subject>reactive power control</subject><subject>Transient analysis</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsGjvgpeA523zsZsmR1m1LRQUrPUYkt3EptRNnWQL_fduaelc3jk87ww8WfZA8IgQLMfLz-mIYlKMKKNFyeVVNiCykDnDnFxf9pLdZsMYN7gfxhincpCpebu3kCzkCxsjmh0M-AatwjbpHzteaUBVaBOELXIB0IuPCbzpkg8tqjzUnU8Rffu0Rh_rkML-2PM1mtrWgk4B4n124_Q22uE577Kvt9dlNcsX79N59bzI6wKLlGvDOTWScioa44gtTMNILSjFzhVGs4Y01HGqGdWCMEwx1tpgJmhTOoolY3fZ0-nuDsJfZ2NSm9BB279UZFLKEk8YFj2FT1QNIUawTu3A_2o4KILV0aTqTaqjSXU22VceTxVvrb3gXMiSCMb-AR-xb2c</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Zhaoyu Wang</creator><creator>Hao Chen</creator><creator>Jianhui Wang</creator><creator>Begovic, Miroslav</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Inverter-Less Hybrid Voltage/Var Control for Distribution Circuits With Photovoltaic Generators</title><author>Zhaoyu Wang ; Hao Chen ; Jianhui Wang ; Begovic, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ab662b92628dbf1e4bd31c8220ff4ba3d1d2f62a32a8130200aab0382d5f20933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Distributed generators</topic><topic>Distributed power generation</topic><topic>distribution systems</topic><topic>Electricity distribution</topic><topic>Loops</topic><topic>photovoltaic (PV) generation</topic><topic>Photovoltaic systems</topic><topic>Reactive power</topic><topic>reactive power control</topic><topic>Transient analysis</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhaoyu Wang</creatorcontrib><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Jianhui Wang</creatorcontrib><creatorcontrib>Begovic, Miroslav</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhaoyu Wang</au><au>Hao Chen</au><au>Jianhui Wang</au><au>Begovic, Miroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverter-Less Hybrid Voltage/Var Control for Distribution Circuits With Photovoltaic Generators</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>5</volume><issue>6</issue><spage>2718</spage><epage>2728</epage><pages>2718-2728</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This paper proposes a hybrid voltage/var control (VVC) architecture for distribution systems with a high PV penetration. The architecture consists of two control loops: coordinated normal control loop and uncoordinated transient cloud movement control loop. In the first loop, hourly dispatches are scheduled for on-load tap changer (OLTC), capacitor banks (CBs), and static var compensators (SVCs) based on forecasted load and PV power output so as to minimize power losses and voltage deviations. The second loop is triggered when large variations of PV power output caused by rapid cloud movement happen. All SVCs and CBs become self-controlled based on local voltage measurements with the single control objective to minimize voltage deviations. SVCs will operate firstly to flatten the voltage profile. If SVCs fail, CBs will switch to provide reactive power support. A time-adaptive delay is applied to each CB to avoid overcompensation. Case studies show the proposed method can optimize the system operation and is effective in voltage regulation with PV generators.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2014.2324569</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2014-11, Vol.5 (6), p.2718-2728
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2014_2324569
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Distributed generators
Distributed power generation
distribution systems
Electricity distribution
Loops
photovoltaic (PV) generation
Photovoltaic systems
Reactive power
reactive power control
Transient analysis
Voltage control
title Inverter-Less Hybrid Voltage/Var Control for Distribution Circuits With Photovoltaic Generators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverter-Less%20Hybrid%20Voltage/Var%20Control%20for%20Distribution%20Circuits%20With%20Photovoltaic%20Generators&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Zhaoyu%20Wang&rft.date=2014-11-01&rft.volume=5&rft.issue=6&rft.spage=2718&rft.epage=2728&rft.pages=2718-2728&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2014.2324569&rft_dat=%3Cproquest_cross%3E3932007571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-ab662b92628dbf1e4bd31c8220ff4ba3d1d2f62a32a8130200aab0382d5f20933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1759507308&rft_id=info:pmid/&rft_ieee_id=6895183&rfr_iscdi=true