Loading…

A Distributed Computing Platform Supporting Power System Security Knowledge Discovery Based on Online Simulation

Power systems are generating masses of data, including measurement and simulation data. To operate and control power systems more effectively, this paper establishes a distributed platform to store, read, and compute massive amounts of data. Our distributed computing platform can support online simu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2017-05, Vol.8 (3), p.1513-1524
Main Authors: Huang, Tian-en, Guo, Qinglai, Sun, Hongbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-83d9576ae92e3cff1ebbe56bc8109b8fb975685e22955d5f7146d3fb387888b23
cites cdi_FETCH-LOGICAL-c291t-83d9576ae92e3cff1ebbe56bc8109b8fb975685e22955d5f7146d3fb387888b23
container_end_page 1524
container_issue 3
container_start_page 1513
container_title IEEE transactions on smart grid
container_volume 8
creator Huang, Tian-en
Guo, Qinglai
Sun, Hongbin
description Power systems are generating masses of data, including measurement and simulation data. To operate and control power systems more effectively, this paper establishes a distributed platform to store, read, and compute massive amounts of data. Our distributed computing platform can support online simulation based power system security knowledge discovery through big data analysis. First, a framework for a distributed computing platform is designed. Then, distributed algorithms are developed, including a distributed massive sampling simulation method and a distributed feature selection method. Next, the software platform and hardware platform for the distributed computing platform are established. Finally, the platform is applied to the Guangdong Province Power System in China to evaluate its accuracy and efficiency. The simulation results show that the distributed computing platform can improve computing efficiency and perform better than a centralized platform.
doi_str_mv 10.1109/TSG.2016.2571442
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2016_2571442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7475869</ieee_id><sourcerecordid>1891107942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-83d9576ae92e3cff1ebbe56bc8109b8fb975685e22955d5f7146d3fb387888b23</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4soOHTvgi8BnzubpEmTxzl1ioMJnc-lPy4jo21q0jr635uysXu548v3vsd9guABRwuMI_m8S9cLEmG-ICzBcUyughmWsQxpxPH1ZWb0Npg7d4h8UUo5kbOgW6JX7Xqri6GHCq1M0w29bvfou857ZWyD0qHrjD1p5ggWpaPrwetQDlb3I_pqzbGGag9TUmn-wI7oJXc-zbRo29a6BZTqZvCB2rT3wY3Kawfzc78Lft7fdquPcLNdf66Wm7AkEvehoJVkCc9BEqClUhiKAhgvSuH_LYQqZMK4YECIZKxiyr_NK6oKKhIhREHoXfB0yu2s-R3A9dnBDLb1JzMspKeWyHhyRSdXaY1zFlTWWd3kdsxwlE1oM482m9BmZ7R-5fG0ogHgYk_ihAku6T9BSXXu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891107942</pqid></control><display><type>article</type><title>A Distributed Computing Platform Supporting Power System Security Knowledge Discovery Based on Online Simulation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Tian-en ; Guo, Qinglai ; Sun, Hongbin</creator><creatorcontrib>Huang, Tian-en ; Guo, Qinglai ; Sun, Hongbin</creatorcontrib><description>Power systems are generating masses of data, including measurement and simulation data. To operate and control power systems more effectively, this paper establishes a distributed platform to store, read, and compute massive amounts of data. Our distributed computing platform can support online simulation based power system security knowledge discovery through big data analysis. First, a framework for a distributed computing platform is designed. Then, distributed algorithms are developed, including a distributed massive sampling simulation method and a distributed feature selection method. Next, the software platform and hardware platform for the distributed computing platform are established. Finally, the platform is applied to the Guangdong Province Power System in China to evaluate its accuracy and efficiency. The simulation results show that the distributed computing platform can improve computing efficiency and perform better than a centralized platform.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2571442</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Computer networks ; Computer simulation ; Computing time ; Cybersecurity ; Data analysis ; Data management ; Data mining ; Distributed computing platform ; Distributed databases ; distributed feature selection ; distributed massive sampling simulation ; Distributed processing ; Electric power distribution ; Knowledge discovery ; On-line systems ; online simulation ; Power system security ; power system security knowledge discovery ; Power system stability ; Simulation ; System effectiveness</subject><ispartof>IEEE transactions on smart grid, 2017-05, Vol.8 (3), p.1513-1524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-83d9576ae92e3cff1ebbe56bc8109b8fb975685e22955d5f7146d3fb387888b23</citedby><cites>FETCH-LOGICAL-c291t-83d9576ae92e3cff1ebbe56bc8109b8fb975685e22955d5f7146d3fb387888b23</cites><orcidid>0000-0002-5465-9818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7475869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Huang, Tian-en</creatorcontrib><creatorcontrib>Guo, Qinglai</creatorcontrib><creatorcontrib>Sun, Hongbin</creatorcontrib><title>A Distributed Computing Platform Supporting Power System Security Knowledge Discovery Based on Online Simulation</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Power systems are generating masses of data, including measurement and simulation data. To operate and control power systems more effectively, this paper establishes a distributed platform to store, read, and compute massive amounts of data. Our distributed computing platform can support online simulation based power system security knowledge discovery through big data analysis. First, a framework for a distributed computing platform is designed. Then, distributed algorithms are developed, including a distributed massive sampling simulation method and a distributed feature selection method. Next, the software platform and hardware platform for the distributed computing platform are established. Finally, the platform is applied to the Guangdong Province Power System in China to evaluate its accuracy and efficiency. The simulation results show that the distributed computing platform can improve computing efficiency and perform better than a centralized platform.</description><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Cybersecurity</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data mining</subject><subject>Distributed computing platform</subject><subject>Distributed databases</subject><subject>distributed feature selection</subject><subject>distributed massive sampling simulation</subject><subject>Distributed processing</subject><subject>Electric power distribution</subject><subject>Knowledge discovery</subject><subject>On-line systems</subject><subject>online simulation</subject><subject>Power system security</subject><subject>power system security knowledge discovery</subject><subject>Power system stability</subject><subject>Simulation</subject><subject>System effectiveness</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4soOHTvgi8BnzubpEmTxzl1ioMJnc-lPy4jo21q0jr635uysXu548v3vsd9guABRwuMI_m8S9cLEmG-ICzBcUyughmWsQxpxPH1ZWb0Npg7d4h8UUo5kbOgW6JX7Xqri6GHCq1M0w29bvfou857ZWyD0qHrjD1p5ggWpaPrwetQDlb3I_pqzbGGag9TUmn-wI7oJXc-zbRo29a6BZTqZvCB2rT3wY3Kawfzc78Lft7fdquPcLNdf66Wm7AkEvehoJVkCc9BEqClUhiKAhgvSuH_LYQqZMK4YECIZKxiyr_NK6oKKhIhREHoXfB0yu2s-R3A9dnBDLb1JzMspKeWyHhyRSdXaY1zFlTWWd3kdsxwlE1oM482m9BmZ7R-5fG0ogHgYk_ihAku6T9BSXXu</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Huang, Tian-en</creator><creator>Guo, Qinglai</creator><creator>Sun, Hongbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5465-9818</orcidid></search><sort><creationdate>20170501</creationdate><title>A Distributed Computing Platform Supporting Power System Security Knowledge Discovery Based on Online Simulation</title><author>Huang, Tian-en ; Guo, Qinglai ; Sun, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-83d9576ae92e3cff1ebbe56bc8109b8fb975685e22955d5f7146d3fb387888b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Cybersecurity</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data mining</topic><topic>Distributed computing platform</topic><topic>Distributed databases</topic><topic>distributed feature selection</topic><topic>distributed massive sampling simulation</topic><topic>Distributed processing</topic><topic>Electric power distribution</topic><topic>Knowledge discovery</topic><topic>On-line systems</topic><topic>online simulation</topic><topic>Power system security</topic><topic>power system security knowledge discovery</topic><topic>Power system stability</topic><topic>Simulation</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tian-en</creatorcontrib><creatorcontrib>Guo, Qinglai</creatorcontrib><creatorcontrib>Sun, Hongbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tian-en</au><au>Guo, Qinglai</au><au>Sun, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distributed Computing Platform Supporting Power System Security Knowledge Discovery Based on Online Simulation</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>8</volume><issue>3</issue><spage>1513</spage><epage>1524</epage><pages>1513-1524</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Power systems are generating masses of data, including measurement and simulation data. To operate and control power systems more effectively, this paper establishes a distributed platform to store, read, and compute massive amounts of data. Our distributed computing platform can support online simulation based power system security knowledge discovery through big data analysis. First, a framework for a distributed computing platform is designed. Then, distributed algorithms are developed, including a distributed massive sampling simulation method and a distributed feature selection method. Next, the software platform and hardware platform for the distributed computing platform are established. Finally, the platform is applied to the Guangdong Province Power System in China to evaluate its accuracy and efficiency. The simulation results show that the distributed computing platform can improve computing efficiency and perform better than a centralized platform.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2016.2571442</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5465-9818</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2017-05, Vol.8 (3), p.1513-1524
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2016_2571442
source IEEE Electronic Library (IEL) Journals
subjects Computational modeling
Computer networks
Computer simulation
Computing time
Cybersecurity
Data analysis
Data management
Data mining
Distributed computing platform
Distributed databases
distributed feature selection
distributed massive sampling simulation
Distributed processing
Electric power distribution
Knowledge discovery
On-line systems
online simulation
Power system security
power system security knowledge discovery
Power system stability
Simulation
System effectiveness
title A Distributed Computing Platform Supporting Power System Security Knowledge Discovery Based on Online Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distributed%20Computing%20Platform%20Supporting%20Power%20System%20Security%20Knowledge%20Discovery%20Based%20on%20Online%20Simulation&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Huang,%20Tian-en&rft.date=2017-05-01&rft.volume=8&rft.issue=3&rft.spage=1513&rft.epage=1524&rft.pages=1513-1524&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2571442&rft_dat=%3Cproquest_cross%3E1891107942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-83d9576ae92e3cff1ebbe56bc8109b8fb975685e22955d5f7146d3fb387888b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891107942&rft_id=info:pmid/&rft_ieee_id=7475869&rfr_iscdi=true