Loading…
Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid
An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop...
Saved in:
Published in: | IEEE transactions on smart grid 2018-09, Vol.9 (5), p.5207-5216 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13 |
container_end_page | 5216 |
container_issue | 5 |
container_start_page | 5207 |
container_title | IEEE transactions on smart grid |
container_volume | 9 |
creator | Li, Xialin Guo, Li Zhang, Shaohui Wang, Chengshan Li, Yun Wei Chen, Anwei Feng, Yibin |
description | An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load. |
doi_str_mv | 10.1109/TSG.2017.2684178 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2017_2684178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7880610</ieee_id><sourcerecordid>2117149058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOHTvgi8BnztzSdqmj7q5KUwGOn0NaXsdHbOZl07xvzdjY_dyx_H93o8PYzcgRgCiuF--z0ZSQD6SmdGQmzM2gEIXiRIZnJ_qVF2yYQhrEUMplcliwN4WZUD6QUoeXcCaT8b80296t0I-Ie-33HU1H--IsOv5FLFOpp5-HcWm73ryG-4b7va217Yiv6K2vmYXjdsEHB7zFfuYPi3Hz8l8MXsZP8yTShbQJxkaqGowqtFQVVJgldZKoM7iH8alWV6mCkUqnXbSNYUGyEzZlEbq1Lm6AnXF7g5zt-S_dxh6u_Y76uJKKwFy0IVITVSJgypeFwJhY7fUfjn6syDsHp6N8Owenj3Ci5bbg6VFxJM8NybSFOofYS1obw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149058</pqid></control><display><type>article</type><title>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xialin ; Guo, Li ; Zhang, Shaohui ; Wang, Chengshan ; Li, Yun Wei ; Chen, Anwei ; Feng, Yibin</creator><creatorcontrib>Li, Xialin ; Guo, Li ; Zhang, Shaohui ; Wang, Chengshan ; Li, Yun Wei ; Chen, Anwei ; Feng, Yibin</creatorcontrib><description>An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2017.2684178</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Control systems ; Control theory ; Converters ; current feed-forward ; DC microgrid ; Direct current ; Distributed generation ; Dynamic response ; Electric potential ; enhanced stability ; Feedforward control ; Microgrids ; observer-based dc voltage droop control ; Observers ; plug-and-play ; Power cables ; Power system stability ; Stability analysis ; Systems stability ; Tradeoffs ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.5207-5216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</citedby><cites>FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</cites><orcidid>0000-0002-5410-4505 ; 0000-0001-6277-8289 ; 0000-0003-1278-2903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7880610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Li, Xialin</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Zhang, Shaohui</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Li, Yun Wei</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Feng, Yibin</creatorcontrib><title>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load.</description><subject>Control systems</subject><subject>Control theory</subject><subject>Converters</subject><subject>current feed-forward</subject><subject>DC microgrid</subject><subject>Direct current</subject><subject>Distributed generation</subject><subject>Dynamic response</subject><subject>Electric potential</subject><subject>enhanced stability</subject><subject>Feedforward control</subject><subject>Microgrids</subject><subject>observer-based dc voltage droop control</subject><subject>Observers</subject><subject>plug-and-play</subject><subject>Power cables</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Systems stability</subject><subject>Tradeoffs</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOHTvgi8BnztzSdqmj7q5KUwGOn0NaXsdHbOZl07xvzdjY_dyx_H93o8PYzcgRgCiuF--z0ZSQD6SmdGQmzM2gEIXiRIZnJ_qVF2yYQhrEUMplcliwN4WZUD6QUoeXcCaT8b80296t0I-Ie-33HU1H--IsOv5FLFOpp5-HcWm73ryG-4b7va217Yiv6K2vmYXjdsEHB7zFfuYPi3Hz8l8MXsZP8yTShbQJxkaqGowqtFQVVJgldZKoM7iH8alWV6mCkUqnXbSNYUGyEzZlEbq1Lm6AnXF7g5zt-S_dxh6u_Y76uJKKwFy0IVITVSJgypeFwJhY7fUfjn6syDsHp6N8Owenj3Ci5bbg6VFxJM8NybSFOofYS1obw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Xialin</creator><creator>Guo, Li</creator><creator>Zhang, Shaohui</creator><creator>Wang, Chengshan</creator><creator>Li, Yun Wei</creator><creator>Chen, Anwei</creator><creator>Feng, Yibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5410-4505</orcidid><orcidid>https://orcid.org/0000-0001-6277-8289</orcidid><orcidid>https://orcid.org/0000-0003-1278-2903</orcidid></search><sort><creationdate>20180901</creationdate><title>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</title><author>Li, Xialin ; Guo, Li ; Zhang, Shaohui ; Wang, Chengshan ; Li, Yun Wei ; Chen, Anwei ; Feng, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Control systems</topic><topic>Control theory</topic><topic>Converters</topic><topic>current feed-forward</topic><topic>DC microgrid</topic><topic>Direct current</topic><topic>Distributed generation</topic><topic>Dynamic response</topic><topic>Electric potential</topic><topic>enhanced stability</topic><topic>Feedforward control</topic><topic>Microgrids</topic><topic>observer-based dc voltage droop control</topic><topic>Observers</topic><topic>plug-and-play</topic><topic>Power cables</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Systems stability</topic><topic>Tradeoffs</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xialin</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Zhang, Shaohui</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Li, Yun Wei</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Feng, Yibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xialin</au><au>Guo, Li</au><au>Zhang, Shaohui</au><au>Wang, Chengshan</au><au>Li, Yun Wei</au><au>Chen, Anwei</au><au>Feng, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>9</volume><issue>5</issue><spage>5207</spage><epage>5216</epage><pages>5207-5216</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2017.2684178</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5410-4505</orcidid><orcidid>https://orcid.org/0000-0001-6277-8289</orcidid><orcidid>https://orcid.org/0000-0003-1278-2903</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.5207-5216 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSG_2017_2684178 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Control systems Control theory Converters current feed-forward DC microgrid Direct current Distributed generation Dynamic response Electric potential enhanced stability Feedforward control Microgrids observer-based dc voltage droop control Observers plug-and-play Power cables Power system stability Stability analysis Systems stability Tradeoffs Voltage control |
title | Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observer-Based%20DC%20Voltage%20Droop%20and%20Current%20Feed-Forward%20Control%20of%20a%20DC%20Microgrid&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Li,%20Xialin&rft.date=2018-09-01&rft.volume=9&rft.issue=5&rft.spage=5207&rft.epage=5216&rft.pages=5207-5216&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2017.2684178&rft_dat=%3Cproquest_cross%3E2117149058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117149058&rft_id=info:pmid/&rft_ieee_id=7880610&rfr_iscdi=true |