Loading…

Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid

An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2018-09, Vol.9 (5), p.5207-5216
Main Authors: Li, Xialin, Guo, Li, Zhang, Shaohui, Wang, Chengshan, Li, Yun Wei, Chen, Anwei, Feng, Yibin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13
cites cdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13
container_end_page 5216
container_issue 5
container_start_page 5207
container_title IEEE transactions on smart grid
container_volume 9
creator Li, Xialin
Guo, Li
Zhang, Shaohui
Wang, Chengshan
Li, Yun Wei
Chen, Anwei
Feng, Yibin
description An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load.
doi_str_mv 10.1109/TSG.2017.2684178
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2017_2684178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7880610</ieee_id><sourcerecordid>2117149058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOHTvgi8BnztzSdqmj7q5KUwGOn0NaXsdHbOZl07xvzdjY_dyx_H93o8PYzcgRgCiuF--z0ZSQD6SmdGQmzM2gEIXiRIZnJ_qVF2yYQhrEUMplcliwN4WZUD6QUoeXcCaT8b80296t0I-Ie-33HU1H--IsOv5FLFOpp5-HcWm73ryG-4b7va217Yiv6K2vmYXjdsEHB7zFfuYPi3Hz8l8MXsZP8yTShbQJxkaqGowqtFQVVJgldZKoM7iH8alWV6mCkUqnXbSNYUGyEzZlEbq1Lm6AnXF7g5zt-S_dxh6u_Y76uJKKwFy0IVITVSJgypeFwJhY7fUfjn6syDsHp6N8Owenj3Ci5bbg6VFxJM8NybSFOofYS1obw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149058</pqid></control><display><type>article</type><title>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xialin ; Guo, Li ; Zhang, Shaohui ; Wang, Chengshan ; Li, Yun Wei ; Chen, Anwei ; Feng, Yibin</creator><creatorcontrib>Li, Xialin ; Guo, Li ; Zhang, Shaohui ; Wang, Chengshan ; Li, Yun Wei ; Chen, Anwei ; Feng, Yibin</creatorcontrib><description>An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2017.2684178</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Control systems ; Control theory ; Converters ; current feed-forward ; DC microgrid ; Direct current ; Distributed generation ; Dynamic response ; Electric potential ; enhanced stability ; Feedforward control ; Microgrids ; observer-based dc voltage droop control ; Observers ; plug-and-play ; Power cables ; Power system stability ; Stability analysis ; Systems stability ; Tradeoffs ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.5207-5216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</citedby><cites>FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</cites><orcidid>0000-0002-5410-4505 ; 0000-0001-6277-8289 ; 0000-0003-1278-2903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7880610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Li, Xialin</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Zhang, Shaohui</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Li, Yun Wei</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Feng, Yibin</creatorcontrib><title>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load.</description><subject>Control systems</subject><subject>Control theory</subject><subject>Converters</subject><subject>current feed-forward</subject><subject>DC microgrid</subject><subject>Direct current</subject><subject>Distributed generation</subject><subject>Dynamic response</subject><subject>Electric potential</subject><subject>enhanced stability</subject><subject>Feedforward control</subject><subject>Microgrids</subject><subject>observer-based dc voltage droop control</subject><subject>Observers</subject><subject>plug-and-play</subject><subject>Power cables</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Systems stability</subject><subject>Tradeoffs</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOHTvgi8BnztzSdqmj7q5KUwGOn0NaXsdHbOZl07xvzdjY_dyx_H93o8PYzcgRgCiuF--z0ZSQD6SmdGQmzM2gEIXiRIZnJ_qVF2yYQhrEUMplcliwN4WZUD6QUoeXcCaT8b80296t0I-Ie-33HU1H--IsOv5FLFOpp5-HcWm73ryG-4b7va217Yiv6K2vmYXjdsEHB7zFfuYPi3Hz8l8MXsZP8yTShbQJxkaqGowqtFQVVJgldZKoM7iH8alWV6mCkUqnXbSNYUGyEzZlEbq1Lm6AnXF7g5zt-S_dxh6u_Y76uJKKwFy0IVITVSJgypeFwJhY7fUfjn6syDsHp6N8Owenj3Ci5bbg6VFxJM8NybSFOofYS1obw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Xialin</creator><creator>Guo, Li</creator><creator>Zhang, Shaohui</creator><creator>Wang, Chengshan</creator><creator>Li, Yun Wei</creator><creator>Chen, Anwei</creator><creator>Feng, Yibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5410-4505</orcidid><orcidid>https://orcid.org/0000-0001-6277-8289</orcidid><orcidid>https://orcid.org/0000-0003-1278-2903</orcidid></search><sort><creationdate>20180901</creationdate><title>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</title><author>Li, Xialin ; Guo, Li ; Zhang, Shaohui ; Wang, Chengshan ; Li, Yun Wei ; Chen, Anwei ; Feng, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Control systems</topic><topic>Control theory</topic><topic>Converters</topic><topic>current feed-forward</topic><topic>DC microgrid</topic><topic>Direct current</topic><topic>Distributed generation</topic><topic>Dynamic response</topic><topic>Electric potential</topic><topic>enhanced stability</topic><topic>Feedforward control</topic><topic>Microgrids</topic><topic>observer-based dc voltage droop control</topic><topic>Observers</topic><topic>plug-and-play</topic><topic>Power cables</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Systems stability</topic><topic>Tradeoffs</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xialin</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Zhang, Shaohui</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Li, Yun Wei</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Feng, Yibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xialin</au><au>Guo, Li</au><au>Zhang, Shaohui</au><au>Wang, Chengshan</au><au>Li, Yun Wei</au><au>Chen, Anwei</au><au>Feng, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>9</volume><issue>5</issue><spage>5207</spage><epage>5216</epage><pages>5207-5216</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>An observer-based dc voltage droop and current feed-forward control for a dc microgrid has been proposed in this paper. With the proposed control scheme, dynamic response of dc voltage control can be improved effectively through using an observer. Moreover, the feedback current for dc voltage droop and the feed-forward current are both obtained from the observer without additional current measurement. Furthermore, system stability analysis shows that, the propose method has enhanced robustness and stability when compared to the traditional droop method under variations of system parameters, such as loads, cable impedances, and droop control gains. In a droop controlled dc microgrid, there exists a trade-off between the load demand sharing accuracy (which needs a high droop gain) and stability (which limits the droop gain). With the above mentioned advantages, the proposed method can effectively address this trade-off in such a system. The effectiveness of the proposed method is verified by experiments in a laboratory dc microgrid with two boost dc-dc converters based distributed generations and a buck type constant power dc load.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2017.2684178</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5410-4505</orcidid><orcidid>https://orcid.org/0000-0001-6277-8289</orcidid><orcidid>https://orcid.org/0000-0003-1278-2903</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.5207-5216
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2017_2684178
source IEEE Electronic Library (IEL) Journals
subjects Control systems
Control theory
Converters
current feed-forward
DC microgrid
Direct current
Distributed generation
Dynamic response
Electric potential
enhanced stability
Feedforward control
Microgrids
observer-based dc voltage droop control
Observers
plug-and-play
Power cables
Power system stability
Stability analysis
Systems stability
Tradeoffs
Voltage control
title Observer-Based DC Voltage Droop and Current Feed-Forward Control of a DC Microgrid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observer-Based%20DC%20Voltage%20Droop%20and%20Current%20Feed-Forward%20Control%20of%20a%20DC%20Microgrid&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Li,%20Xialin&rft.date=2018-09-01&rft.volume=9&rft.issue=5&rft.spage=5207&rft.epage=5216&rft.pages=5207-5216&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2017.2684178&rft_dat=%3Cproquest_cross%3E2117149058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-6e81cd183f41cc20ec5d30e460178a567b53e052a4a2af941168bfb8245aadc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117149058&rft_id=info:pmid/&rft_ieee_id=7880610&rfr_iscdi=true