Loading…
PV Inverter Based Fair Power Quality Control
Low voltage distribution networks incorporating solar photovoltaic (PV) panels experience overvoltage and voltage unbalance during periods of low load and high PV generation. Resolving overvoltage by active power curtailment (APC) is an effective and cost-efficient solution. However, current APC tec...
Saved in:
Published in: | IEEE transactions on smart grid 2023-09, Vol.14 (5), p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low voltage distribution networks incorporating solar photovoltaic (PV) panels experience overvoltage and voltage unbalance during periods of low load and high PV generation. Resolving overvoltage by active power curtailment (APC) is an effective and cost-efficient solution. However, current APC techniques result in excessive and unfair power curtailment for prosumers at the sensitive parts of the grid that might induce neutral current. In this work, an analytical approach for fair APC and Reactive Power Control is presented for voltage regulation along with neutral current compensation. The desired power quality is maintained by controlling each phase of the PV inverter independently. The proposed algorithm regulates the voltage at the point of common coupling (PCC) within grid limits, eliminates neutral current, and reduces the grid unbalance. Furthermore, the results demonstrate that reducing the neutral current reduces the voltage at the PCC and consequently decreases the power curtailment required for overvoltage regulation. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2023.3244601 |