Loading…

Collaborative Cloud and Edge Mobile Computing in C-RAN Systems With Minimal End-to-End Latency

Mobile cloud and edge computing protocols make it possible to offer computationally heavy applications to mobile devices via computational offloading from devices to nearby edge servers or more powerful, but remote, cloud servers. Previous work assumed that computational tasks can be fractionally of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal and information processing over networks 2021, Vol.7, p.259-274
Main Authors: Park, Seok-Hwan, Jeong, Seongah, Na, Jinyeop, Simeone, Osvaldo, Shamai, Shlomo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-ba32e7dbc615beb1b24c18386e86c43bbe9186b150161b56369ab7add761021d3
cites cdi_FETCH-LOGICAL-c339t-ba32e7dbc615beb1b24c18386e86c43bbe9186b150161b56369ab7add761021d3
container_end_page 274
container_issue
container_start_page 259
container_title IEEE transactions on signal and information processing over networks
container_volume 7
creator Park, Seok-Hwan
Jeong, Seongah
Na, Jinyeop
Simeone, Osvaldo
Shamai, Shlomo
description Mobile cloud and edge computing protocols make it possible to offer computationally heavy applications to mobile devices via computational offloading from devices to nearby edge servers or more powerful, but remote, cloud servers. Previous work assumed that computational tasks can be fractionally offloaded at both cloud processor (CP) and at a local edge node (EN) within a conventional Distributed Radio Access Network (D-RAN) that relies on non-cooperative ENs equipped with one-way uplink fronthaul connection to the cloud. In this paper, we propose to integrate collaborative fractional computing across CP and ENs within a Cloud RAN (C-RAN) architecture with finite-capacity two-way fronthaul links. Accordingly, tasks offloaded by a mobile device can be partially carried out at an EN and the CP, with multiple ENs communicating with a common CP to exchange data and computational outcomes while allowing for centralized precoding and decoding. Unlike prior work, we investigate joint optimization of computing and communication resources, including wireless and fronthaul segments, to minimize the end-to-end latency by accounting for a two-way uplink and downlink transmission. The problem is tackled by using fractional programming (FP) and matrix FP. Extensive numerical results validate the performance gain of the proposed architecture as compared to the previously studied D-RAN solution.
doi_str_mv 10.1109/TSIPN.2021.3070712
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSIPN_2021_3070712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9397373</ieee_id><sourcerecordid>2519085169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ba32e7dbc615beb1b24c18386e86c43bbe9186b150161b56369ab7add761021d3</originalsourceid><addsrcrecordid>eNpNkF9PwjAUxRujiQT5AvrSxOdh78ra9ZEsqCSARjD6ZNOuBUvGimsx4ds7hBifzs3NOffPD6FrIH0AIu4W8_HzrJ-SFPqUcMIhPUOdlHKacM7ez__Vl6gXwpoQAhkfcCE66KPwVaW0b1R03xYXld8ZrGqDR2Zl8dRrV7Vdv9nuoqtX2NW4SF6GMzzfh2g3Ab-5-ImnrnYbVeFRbZLok1bwREVbl_srdLFUVbC9k3bR6_1oUTwmk6eHcTGcJCWlIiZa0dRyo0sGmbYadDooIac5szkrB1RrKyBnGjICDHTGKBNKc2UMZ9C-bWgX3R7nbhv_tbMhyrXfNXW7UqYZCJJnwETrSo-usvEhNHYpt017eLOXQOQBpfxFKQ8o5QllG7o5hpy19i8gqOAtVfoDqg1uaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519085169</pqid></control><display><type>article</type><title>Collaborative Cloud and Edge Mobile Computing in C-RAN Systems With Minimal End-to-End Latency</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Park, Seok-Hwan ; Jeong, Seongah ; Na, Jinyeop ; Simeone, Osvaldo ; Shamai, Shlomo</creator><creatorcontrib>Park, Seok-Hwan ; Jeong, Seongah ; Na, Jinyeop ; Simeone, Osvaldo ; Shamai, Shlomo</creatorcontrib><description>Mobile cloud and edge computing protocols make it possible to offer computationally heavy applications to mobile devices via computational offloading from devices to nearby edge servers or more powerful, but remote, cloud servers. Previous work assumed that computational tasks can be fractionally offloaded at both cloud processor (CP) and at a local edge node (EN) within a conventional Distributed Radio Access Network (D-RAN) that relies on non-cooperative ENs equipped with one-way uplink fronthaul connection to the cloud. In this paper, we propose to integrate collaborative fractional computing across CP and ENs within a Cloud RAN (C-RAN) architecture with finite-capacity two-way fronthaul links. Accordingly, tasks offloaded by a mobile device can be partially carried out at an EN and the CP, with multiple ENs communicating with a common CP to exchange data and computational outcomes while allowing for centralized precoding and decoding. Unlike prior work, we investigate joint optimization of computing and communication resources, including wireless and fronthaul segments, to minimize the end-to-end latency by accounting for a two-way uplink and downlink transmission. The problem is tackled by using fractional programming (FP) and matrix FP. Extensive numerical results validate the performance gain of the proposed architecture as compared to the previously studied D-RAN solution.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2021.3070712</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>(matrix) fractional programming ; C-RAN ; Cloud computing ; Collaboration ; Computation offloading ; Computer architecture ; constrained fronthaul ; Downlink ; Edge computing ; Electronic devices ; end-to-end latency minimization ; Mathematical programming ; Microprocessors ; Mobile cloud computing ; Mobile computing ; Network latency ; Optimization ; Servers ; Task analysis ; Uplink ; Wireless communications</subject><ispartof>IEEE transactions on signal and information processing over networks, 2021, Vol.7, p.259-274</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-ba32e7dbc615beb1b24c18386e86c43bbe9186b150161b56369ab7add761021d3</citedby><cites>FETCH-LOGICAL-c339t-ba32e7dbc615beb1b24c18386e86c43bbe9186b150161b56369ab7add761021d3</cites><orcidid>0000-0002-9737-0432 ; 0000-0001-9898-3209 ; 0000-0001-9395-2550 ; 0000-0002-6594-3371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9397373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Park, Seok-Hwan</creatorcontrib><creatorcontrib>Jeong, Seongah</creatorcontrib><creatorcontrib>Na, Jinyeop</creatorcontrib><creatorcontrib>Simeone, Osvaldo</creatorcontrib><creatorcontrib>Shamai, Shlomo</creatorcontrib><title>Collaborative Cloud and Edge Mobile Computing in C-RAN Systems With Minimal End-to-End Latency</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>Mobile cloud and edge computing protocols make it possible to offer computationally heavy applications to mobile devices via computational offloading from devices to nearby edge servers or more powerful, but remote, cloud servers. Previous work assumed that computational tasks can be fractionally offloaded at both cloud processor (CP) and at a local edge node (EN) within a conventional Distributed Radio Access Network (D-RAN) that relies on non-cooperative ENs equipped with one-way uplink fronthaul connection to the cloud. In this paper, we propose to integrate collaborative fractional computing across CP and ENs within a Cloud RAN (C-RAN) architecture with finite-capacity two-way fronthaul links. Accordingly, tasks offloaded by a mobile device can be partially carried out at an EN and the CP, with multiple ENs communicating with a common CP to exchange data and computational outcomes while allowing for centralized precoding and decoding. Unlike prior work, we investigate joint optimization of computing and communication resources, including wireless and fronthaul segments, to minimize the end-to-end latency by accounting for a two-way uplink and downlink transmission. The problem is tackled by using fractional programming (FP) and matrix FP. Extensive numerical results validate the performance gain of the proposed architecture as compared to the previously studied D-RAN solution.</description><subject>(matrix) fractional programming</subject><subject>C-RAN</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computation offloading</subject><subject>Computer architecture</subject><subject>constrained fronthaul</subject><subject>Downlink</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>end-to-end latency minimization</subject><subject>Mathematical programming</subject><subject>Microprocessors</subject><subject>Mobile cloud computing</subject><subject>Mobile computing</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Uplink</subject><subject>Wireless communications</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkF9PwjAUxRujiQT5AvrSxOdh78ra9ZEsqCSARjD6ZNOuBUvGimsx4ds7hBifzs3NOffPD6FrIH0AIu4W8_HzrJ-SFPqUcMIhPUOdlHKacM7ez__Vl6gXwpoQAhkfcCE66KPwVaW0b1R03xYXld8ZrGqDR2Zl8dRrV7Vdv9nuoqtX2NW4SF6GMzzfh2g3Ab-5-ImnrnYbVeFRbZLok1bwREVbl_srdLFUVbC9k3bR6_1oUTwmk6eHcTGcJCWlIiZa0dRyo0sGmbYadDooIac5szkrB1RrKyBnGjICDHTGKBNKc2UMZ9C-bWgX3R7nbhv_tbMhyrXfNXW7UqYZCJJnwETrSo-usvEhNHYpt017eLOXQOQBpfxFKQ8o5QllG7o5hpy19i8gqOAtVfoDqg1uaQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Park, Seok-Hwan</creator><creator>Jeong, Seongah</creator><creator>Na, Jinyeop</creator><creator>Simeone, Osvaldo</creator><creator>Shamai, Shlomo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9737-0432</orcidid><orcidid>https://orcid.org/0000-0001-9898-3209</orcidid><orcidid>https://orcid.org/0000-0001-9395-2550</orcidid><orcidid>https://orcid.org/0000-0002-6594-3371</orcidid></search><sort><creationdate>2021</creationdate><title>Collaborative Cloud and Edge Mobile Computing in C-RAN Systems With Minimal End-to-End Latency</title><author>Park, Seok-Hwan ; Jeong, Seongah ; Na, Jinyeop ; Simeone, Osvaldo ; Shamai, Shlomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ba32e7dbc615beb1b24c18386e86c43bbe9186b150161b56369ab7add761021d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>(matrix) fractional programming</topic><topic>C-RAN</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computation offloading</topic><topic>Computer architecture</topic><topic>constrained fronthaul</topic><topic>Downlink</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>end-to-end latency minimization</topic><topic>Mathematical programming</topic><topic>Microprocessors</topic><topic>Mobile cloud computing</topic><topic>Mobile computing</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Uplink</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Seok-Hwan</creatorcontrib><creatorcontrib>Jeong, Seongah</creatorcontrib><creatorcontrib>Na, Jinyeop</creatorcontrib><creatorcontrib>Simeone, Osvaldo</creatorcontrib><creatorcontrib>Shamai, Shlomo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Seok-Hwan</au><au>Jeong, Seongah</au><au>Na, Jinyeop</au><au>Simeone, Osvaldo</au><au>Shamai, Shlomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Cloud and Edge Mobile Computing in C-RAN Systems With Minimal End-to-End Latency</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2021</date><risdate>2021</risdate><volume>7</volume><spage>259</spage><epage>274</epage><pages>259-274</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>Mobile cloud and edge computing protocols make it possible to offer computationally heavy applications to mobile devices via computational offloading from devices to nearby edge servers or more powerful, but remote, cloud servers. Previous work assumed that computational tasks can be fractionally offloaded at both cloud processor (CP) and at a local edge node (EN) within a conventional Distributed Radio Access Network (D-RAN) that relies on non-cooperative ENs equipped with one-way uplink fronthaul connection to the cloud. In this paper, we propose to integrate collaborative fractional computing across CP and ENs within a Cloud RAN (C-RAN) architecture with finite-capacity two-way fronthaul links. Accordingly, tasks offloaded by a mobile device can be partially carried out at an EN and the CP, with multiple ENs communicating with a common CP to exchange data and computational outcomes while allowing for centralized precoding and decoding. Unlike prior work, we investigate joint optimization of computing and communication resources, including wireless and fronthaul segments, to minimize the end-to-end latency by accounting for a two-way uplink and downlink transmission. The problem is tackled by using fractional programming (FP) and matrix FP. Extensive numerical results validate the performance gain of the proposed architecture as compared to the previously studied D-RAN solution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2021.3070712</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9737-0432</orcidid><orcidid>https://orcid.org/0000-0001-9898-3209</orcidid><orcidid>https://orcid.org/0000-0001-9395-2550</orcidid><orcidid>https://orcid.org/0000-0002-6594-3371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2373-776X
ispartof IEEE transactions on signal and information processing over networks, 2021, Vol.7, p.259-274
issn 2373-776X
2373-776X
2373-7778
language eng
recordid cdi_crossref_primary_10_1109_TSIPN_2021_3070712
source IEEE Electronic Library (IEL) Journals
subjects (matrix) fractional programming
C-RAN
Cloud computing
Collaboration
Computation offloading
Computer architecture
constrained fronthaul
Downlink
Edge computing
Electronic devices
end-to-end latency minimization
Mathematical programming
Microprocessors
Mobile cloud computing
Mobile computing
Network latency
Optimization
Servers
Task analysis
Uplink
Wireless communications
title Collaborative Cloud and Edge Mobile Computing in C-RAN Systems With Minimal End-to-End Latency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Cloud%20and%20Edge%20Mobile%20Computing%20in%20C-RAN%20Systems%20With%20Minimal%20End-to-End%20Latency&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Park,%20Seok-Hwan&rft.date=2021&rft.volume=7&rft.spage=259&rft.epage=274&rft.pages=259-274&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2021.3070712&rft_dat=%3Cproquest_cross%3E2519085169%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-ba32e7dbc615beb1b24c18386e86c43bbe9186b150161b56369ab7add761021d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519085169&rft_id=info:pmid/&rft_ieee_id=9397373&rfr_iscdi=true