Loading…

Distributed Adaptive Signal Estimation in Wireless Sensor Networks With Partial Prior Knowledge of the Desired Sources Steering Matrix

In the past two decades, wireless sensor networks (WSNs) and their applications have been the topic of many studies. Different multi-sensor nodes are used to collect, process and distribute data over wireless links to perform different tasks such as smart detection, target tracking, node localizatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal and information processing over networks 2021, Vol.7, p.478-492
Main Authors: Van Rompaey, Robbe, Moonen, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-89f624996b4aa062da71b4d8abf425e3024b0dbe396872c83e94c8607935cee3
cites cdi_FETCH-LOGICAL-c295t-89f624996b4aa062da71b4d8abf425e3024b0dbe396872c83e94c8607935cee3
container_end_page 492
container_issue
container_start_page 478
container_title IEEE transactions on signal and information processing over networks
container_volume 7
creator Van Rompaey, Robbe
Moonen, Marc
description In the past two decades, wireless sensor networks (WSNs) and their applications have been the topic of many studies. Different multi-sensor nodes are used to collect, process and distribute data over wireless links to perform different tasks such as smart detection, target tracking, node localization, etc. In this article, the problem of distributed adaptive estimation of node-specific signals for signal enhancement or noise reduction is addressed. First the centralized rank R generalized eigenvalue decomposition (GEVD) based multichannel Wiener filter (MWF) with prior knowledge for node-specific signal estimation in a WSN is introduced, where (some of) the nodes have partial prior knowledge of the desired sources steering matrix. A distributed adaptive estimation algorithm for a fully-connected WSN is then proposed demonstrating that this MWF can be obtained by letting the nodes work on compressed (i.e. reduced-dimensional) sensor signals compared to the centralized algorithm. The distributed algorithm can be used in applications such as speech enhancement in a wireless acoustic sensor network (WASN), where (some of) the nodes have prior knowledge on the location of the desired speech sources and on their local microphone array geometry or have access to clean noise reference signals. Foundations for a proof of convergence using a Lagrangian framework, are given, since convergence is observed in batch-mode simulations. Finally, numerical simulation results are provided for a speech enhancement scenario.
doi_str_mv 10.1109/TSIPN.2021.3098941
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSIPN_2021_3098941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9495231</ieee_id><sourcerecordid>2560918803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-89f624996b4aa062da71b4d8abf425e3024b0dbe396872c83e94c8607935cee3</originalsourceid><addsrcrecordid>eNpNkNtOwkAQQBujiQT5AX3ZxOfi3nrZRwKoRESSkuhbs22nsFi7uLuI_oDf7SLE-DSTzJy5nCC4JLhPCBY3i2wyn_UppqTPsEgFJydBh7KEhUkSv5z-y8-DnrVrjDGJEp4I0Qm-R8o6o4qtgwoNKrlx6gNQppatbNDYOvUmndItUi16VgYasBZl0Fpt0AzcTptX6wtuhebSOOWZuVG-9tDqXQPVEpCukVsBGoH1eIUyvTUl-BkOwKh2iR6lX_95EZzVsrHQO8ZusLgdL4b34fTpbjIcTMOSisiFqahjyoWICy4ljmklE1LwKpVFzWkEDFNe4KoAJuI0oWXKQPAyjXEiWFQCsG5wfRi7Mfp9C9bla3-Pf9XmNIqxIGmKme-ih67SaGsN1PnGeA_mKyc43xvPf43ne-P50biHrg6QAoA_QHARUUbYDwGlftE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560918803</pqid></control><display><type>article</type><title>Distributed Adaptive Signal Estimation in Wireless Sensor Networks With Partial Prior Knowledge of the Desired Sources Steering Matrix</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Van Rompaey, Robbe ; Moonen, Marc</creator><creatorcontrib>Van Rompaey, Robbe ; Moonen, Marc</creatorcontrib><description>In the past two decades, wireless sensor networks (WSNs) and their applications have been the topic of many studies. Different multi-sensor nodes are used to collect, process and distribute data over wireless links to perform different tasks such as smart detection, target tracking, node localization, etc. In this article, the problem of distributed adaptive estimation of node-specific signals for signal enhancement or noise reduction is addressed. First the centralized rank &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;R&lt;/tex-math&gt;&lt;/inline-formula&gt; generalized eigenvalue decomposition (GEVD) based multichannel Wiener filter (MWF) with prior knowledge for node-specific signal estimation in a WSN is introduced, where (some of) the nodes have partial prior knowledge of the desired sources steering matrix. A distributed adaptive estimation algorithm for a fully-connected WSN is then proposed demonstrating that this MWF can be obtained by letting the nodes work on compressed (i.e. reduced-dimensional) sensor signals compared to the centralized algorithm. The distributed algorithm can be used in applications such as speech enhancement in a wireless acoustic sensor network (WASN), where (some of) the nodes have prior knowledge on the location of the desired speech sources and on their local microphone array geometry or have access to clean noise reference signals. Foundations for a proof of convergence using a Lagrangian framework, are given, since convergence is observed in batch-mode simulations. Finally, numerical simulation results are provided for a speech enhancement scenario.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2021.3098941</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Computer simulation ; Convergence ; Correlation ; distributed estimation ; Eigenvalues ; Estimation ; generalized eigenvalue decomposition (GEVD) ; Information processing ; Knowledge engineering ; multichannel wiener filter (MWF) ; Nodes ; Noise reduction ; Optimization ; prior knowledge ; Reference signals ; Sensors ; Speech enhancement ; Speech processing ; Steering ; Target detection ; Tracking ; Wiener filtering ; Wireless networks ; Wireless sensor networks ; Wireless sensor networks (WSN)</subject><ispartof>IEEE transactions on signal and information processing over networks, 2021, Vol.7, p.478-492</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-89f624996b4aa062da71b4d8abf425e3024b0dbe396872c83e94c8607935cee3</citedby><cites>FETCH-LOGICAL-c295t-89f624996b4aa062da71b4d8abf425e3024b0dbe396872c83e94c8607935cee3</cites><orcidid>0000-0002-8475-0647 ; 0000-0003-4461-0073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9495231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Van Rompaey, Robbe</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><title>Distributed Adaptive Signal Estimation in Wireless Sensor Networks With Partial Prior Knowledge of the Desired Sources Steering Matrix</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>In the past two decades, wireless sensor networks (WSNs) and their applications have been the topic of many studies. Different multi-sensor nodes are used to collect, process and distribute data over wireless links to perform different tasks such as smart detection, target tracking, node localization, etc. In this article, the problem of distributed adaptive estimation of node-specific signals for signal enhancement or noise reduction is addressed. First the centralized rank &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;R&lt;/tex-math&gt;&lt;/inline-formula&gt; generalized eigenvalue decomposition (GEVD) based multichannel Wiener filter (MWF) with prior knowledge for node-specific signal estimation in a WSN is introduced, where (some of) the nodes have partial prior knowledge of the desired sources steering matrix. A distributed adaptive estimation algorithm for a fully-connected WSN is then proposed demonstrating that this MWF can be obtained by letting the nodes work on compressed (i.e. reduced-dimensional) sensor signals compared to the centralized algorithm. The distributed algorithm can be used in applications such as speech enhancement in a wireless acoustic sensor network (WASN), where (some of) the nodes have prior knowledge on the location of the desired speech sources and on their local microphone array geometry or have access to clean noise reference signals. Foundations for a proof of convergence using a Lagrangian framework, are given, since convergence is observed in batch-mode simulations. Finally, numerical simulation results are provided for a speech enhancement scenario.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Correlation</subject><subject>distributed estimation</subject><subject>Eigenvalues</subject><subject>Estimation</subject><subject>generalized eigenvalue decomposition (GEVD)</subject><subject>Information processing</subject><subject>Knowledge engineering</subject><subject>multichannel wiener filter (MWF)</subject><subject>Nodes</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>prior knowledge</subject><subject>Reference signals</subject><subject>Sensors</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Steering</subject><subject>Target detection</subject><subject>Tracking</subject><subject>Wiener filtering</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><subject>Wireless sensor networks (WSN)</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkNtOwkAQQBujiQT5AX3ZxOfi3nrZRwKoRESSkuhbs22nsFi7uLuI_oDf7SLE-DSTzJy5nCC4JLhPCBY3i2wyn_UppqTPsEgFJydBh7KEhUkSv5z-y8-DnrVrjDGJEp4I0Qm-R8o6o4qtgwoNKrlx6gNQppatbNDYOvUmndItUi16VgYasBZl0Fpt0AzcTptX6wtuhebSOOWZuVG-9tDqXQPVEpCukVsBGoH1eIUyvTUl-BkOwKh2iR6lX_95EZzVsrHQO8ZusLgdL4b34fTpbjIcTMOSisiFqahjyoWICy4ljmklE1LwKpVFzWkEDFNe4KoAJuI0oWXKQPAyjXEiWFQCsG5wfRi7Mfp9C9bla3-Pf9XmNIqxIGmKme-ih67SaGsN1PnGeA_mKyc43xvPf43ne-P50biHrg6QAoA_QHARUUbYDwGlftE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Van Rompaey, Robbe</creator><creator>Moonen, Marc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8475-0647</orcidid><orcidid>https://orcid.org/0000-0003-4461-0073</orcidid></search><sort><creationdate>2021</creationdate><title>Distributed Adaptive Signal Estimation in Wireless Sensor Networks With Partial Prior Knowledge of the Desired Sources Steering Matrix</title><author>Van Rompaey, Robbe ; Moonen, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-89f624996b4aa062da71b4d8abf425e3024b0dbe396872c83e94c8607935cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Correlation</topic><topic>distributed estimation</topic><topic>Eigenvalues</topic><topic>Estimation</topic><topic>generalized eigenvalue decomposition (GEVD)</topic><topic>Information processing</topic><topic>Knowledge engineering</topic><topic>multichannel wiener filter (MWF)</topic><topic>Nodes</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>prior knowledge</topic><topic>Reference signals</topic><topic>Sensors</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Steering</topic><topic>Target detection</topic><topic>Tracking</topic><topic>Wiener filtering</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><topic>Wireless sensor networks (WSN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Rompaey, Robbe</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Rompaey, Robbe</au><au>Moonen, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Adaptive Signal Estimation in Wireless Sensor Networks With Partial Prior Knowledge of the Desired Sources Steering Matrix</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2021</date><risdate>2021</risdate><volume>7</volume><spage>478</spage><epage>492</epage><pages>478-492</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>In the past two decades, wireless sensor networks (WSNs) and their applications have been the topic of many studies. Different multi-sensor nodes are used to collect, process and distribute data over wireless links to perform different tasks such as smart detection, target tracking, node localization, etc. In this article, the problem of distributed adaptive estimation of node-specific signals for signal enhancement or noise reduction is addressed. First the centralized rank &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;R&lt;/tex-math&gt;&lt;/inline-formula&gt; generalized eigenvalue decomposition (GEVD) based multichannel Wiener filter (MWF) with prior knowledge for node-specific signal estimation in a WSN is introduced, where (some of) the nodes have partial prior knowledge of the desired sources steering matrix. A distributed adaptive estimation algorithm for a fully-connected WSN is then proposed demonstrating that this MWF can be obtained by letting the nodes work on compressed (i.e. reduced-dimensional) sensor signals compared to the centralized algorithm. The distributed algorithm can be used in applications such as speech enhancement in a wireless acoustic sensor network (WASN), where (some of) the nodes have prior knowledge on the location of the desired speech sources and on their local microphone array geometry or have access to clean noise reference signals. Foundations for a proof of convergence using a Lagrangian framework, are given, since convergence is observed in batch-mode simulations. Finally, numerical simulation results are provided for a speech enhancement scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2021.3098941</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8475-0647</orcidid><orcidid>https://orcid.org/0000-0003-4461-0073</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-776X
ispartof IEEE transactions on signal and information processing over networks, 2021, Vol.7, p.478-492
issn 2373-776X
2373-776X
2373-7778
language eng
recordid cdi_crossref_primary_10_1109_TSIPN_2021_3098941
source IEEE Electronic Library (IEL) Journals
subjects Adaptive algorithms
Algorithms
Computer simulation
Convergence
Correlation
distributed estimation
Eigenvalues
Estimation
generalized eigenvalue decomposition (GEVD)
Information processing
Knowledge engineering
multichannel wiener filter (MWF)
Nodes
Noise reduction
Optimization
prior knowledge
Reference signals
Sensors
Speech enhancement
Speech processing
Steering
Target detection
Tracking
Wiener filtering
Wireless networks
Wireless sensor networks
Wireless sensor networks (WSN)
title Distributed Adaptive Signal Estimation in Wireless Sensor Networks With Partial Prior Knowledge of the Desired Sources Steering Matrix
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Adaptive%20Signal%20Estimation%20in%20Wireless%20Sensor%20Networks%20With%20Partial%20Prior%20Knowledge%20of%20the%20Desired%20Sources%20Steering%20Matrix&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Van%20Rompaey,%20Robbe&rft.date=2021&rft.volume=7&rft.spage=478&rft.epage=492&rft.pages=478-492&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2021.3098941&rft_dat=%3Cproquest_cross%3E2560918803%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-89f624996b4aa062da71b4d8abf425e3024b0dbe396872c83e94c8607935cee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560918803&rft_id=info:pmid/&rft_ieee_id=9495231&rfr_iscdi=true