Loading…

Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters

This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-04, Vol.51 (4), p.2246-2257
Main Authors: Wang, Jiahui, Luo, Wensheng, Liu, Jianxing, Wu, Ligang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733
cites cdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733
container_end_page 2257
container_issue 4
container_start_page 2246
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 51
creator Wang, Jiahui
Luo, Wensheng
Liu, Jianxing
Wu, Ligang
description This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results.
doi_str_mv 10.1109/TSMC.2019.2911721
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2019_2911721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8710611</ieee_id><sourcerecordid>2503499302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</originalsourceid><addsrcrecordid>eNo9kFFrwjAQx8PYYOL8AGMvgT3X5ZIlbR61zm2gbqB7DrW5joo2XVKFfvu1KD7dcfz-d8ePkEdgYwCmXzbrZTrmDPSYa4CYww0ZcFBJxLngt9ce1D0ZhbBjjAFPlGBqQL4nNqub8oR009YYcTpfraJpFtDSWVtlhzKn631py-qXLp1Fmrqq8W5PXUFnaTRL6dS50PTjE_oGfXggd0W2Dzi61CH5mb9t0o9o8fX-mU4WUc61aCLLE7HVmDANCIXKwMruSUAupFBbsHEiWa5kbhUIWWQoC6XyXEiWxPEWYiGG5Pm8t_bu74ihMTt39FV30nDJxKvWgvGOgjOVexeCx8LUvjxkvjXATO_O9O5M785c3HWZp3OmRMQrn8TAFID4ByDFZvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499302</pqid></control><display><type>article</type><title>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Jiahui ; Luo, Wensheng ; Liu, Jianxing ; Wu, Ligang</creator><creatorcontrib>Wang, Jiahui ; Luo, Wensheng ; Liu, Jianxing ; Wu, Ligang</creatorcontrib><description>This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2019.2911721</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Algorithms ; Artificial neural networks ; Capacitors ; Converters ; DC–DC boost converter ; Electric potential ; Fuzzy control ; Fuzzy logic ; Fuzzy neural networks ; fuzzy sets ; Inductors ; interval type-2 fuzzy neural network (IT2FNN) ; Legislation ; Machine learning ; membership function ; Neural networks ; Parameter uncertainty ; Perturbation ; Perturbation methods ; Sliding mode control ; sliding mode control (SMC) ; Tracking errors ; Uncertainty ; Voltage ; Voltage control ; Voltage converters (DC to DC)</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-04, Vol.51 (4), p.2246-2257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</citedby><cites>FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</cites><orcidid>0000-0002-8516-4498 ; 0000-0001-8198-5267 ; 0000-0001-8743-6728 ; 0000-0002-2201-3887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8710611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Jiahui</creatorcontrib><creatorcontrib>Luo, Wensheng</creatorcontrib><creatorcontrib>Liu, Jianxing</creatorcontrib><creatorcontrib>Wu, Ligang</creatorcontrib><title>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Capacitors</subject><subject>Converters</subject><subject>DC–DC boost converter</subject><subject>Electric potential</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>fuzzy sets</subject><subject>Inductors</subject><subject>interval type-2 fuzzy neural network (IT2FNN)</subject><subject>Legislation</subject><subject>Machine learning</subject><subject>membership function</subject><subject>Neural networks</subject><subject>Parameter uncertainty</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Sliding mode control</subject><subject>sliding mode control (SMC)</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Voltage converters (DC to DC)</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFFrwjAQx8PYYOL8AGMvgT3X5ZIlbR61zm2gbqB7DrW5joo2XVKFfvu1KD7dcfz-d8ePkEdgYwCmXzbrZTrmDPSYa4CYww0ZcFBJxLngt9ce1D0ZhbBjjAFPlGBqQL4nNqub8oR009YYcTpfraJpFtDSWVtlhzKn631py-qXLp1Fmrqq8W5PXUFnaTRL6dS50PTjE_oGfXggd0W2Dzi61CH5mb9t0o9o8fX-mU4WUc61aCLLE7HVmDANCIXKwMruSUAupFBbsHEiWa5kbhUIWWQoC6XyXEiWxPEWYiGG5Pm8t_bu74ihMTt39FV30nDJxKvWgvGOgjOVexeCx8LUvjxkvjXATO_O9O5M785c3HWZp3OmRMQrn8TAFID4ByDFZvQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Jiahui</creator><creator>Luo, Wensheng</creator><creator>Liu, Jianxing</creator><creator>Wu, Ligang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8516-4498</orcidid><orcidid>https://orcid.org/0000-0001-8198-5267</orcidid><orcidid>https://orcid.org/0000-0001-8743-6728</orcidid><orcidid>https://orcid.org/0000-0002-2201-3887</orcidid></search><sort><creationdate>20210401</creationdate><title>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</title><author>Wang, Jiahui ; Luo, Wensheng ; Liu, Jianxing ; Wu, Ligang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Capacitors</topic><topic>Converters</topic><topic>DC–DC boost converter</topic><topic>Electric potential</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>fuzzy sets</topic><topic>Inductors</topic><topic>interval type-2 fuzzy neural network (IT2FNN)</topic><topic>Legislation</topic><topic>Machine learning</topic><topic>membership function</topic><topic>Neural networks</topic><topic>Parameter uncertainty</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Sliding mode control</topic><topic>sliding mode control (SMC)</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Voltage converters (DC to DC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiahui</creatorcontrib><creatorcontrib>Luo, Wensheng</creatorcontrib><creatorcontrib>Liu, Jianxing</creatorcontrib><creatorcontrib>Wu, Ligang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiahui</au><au>Luo, Wensheng</au><au>Liu, Jianxing</au><au>Wu, Ligang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>51</volume><issue>4</issue><spage>2246</spage><epage>2257</epage><pages>2246-2257</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2019.2911721</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8516-4498</orcidid><orcidid>https://orcid.org/0000-0001-8198-5267</orcidid><orcidid>https://orcid.org/0000-0001-8743-6728</orcidid><orcidid>https://orcid.org/0000-0002-2201-3887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2021-04, Vol.51 (4), p.2246-2257
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2019_2911721
source IEEE Electronic Library (IEL) Journals
subjects Adaptive control
Algorithms
Artificial neural networks
Capacitors
Converters
DC–DC boost converter
Electric potential
Fuzzy control
Fuzzy logic
Fuzzy neural networks
fuzzy sets
Inductors
interval type-2 fuzzy neural network (IT2FNN)
Legislation
Machine learning
membership function
Neural networks
Parameter uncertainty
Perturbation
Perturbation methods
Sliding mode control
sliding mode control (SMC)
Tracking errors
Uncertainty
Voltage
Voltage control
Voltage converters (DC to DC)
title Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Type-2%20FNN-Based%20Dynamic%20Sliding%20Mode%20Control%20of%20DC-DC%20Boost%20Converters&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Wang,%20Jiahui&rft.date=2021-04-01&rft.volume=51&rft.issue=4&rft.spage=2246&rft.epage=2257&rft.pages=2246-2257&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2019.2911721&rft_dat=%3Cproquest_cross%3E2503499302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503499302&rft_id=info:pmid/&rft_ieee_id=8710611&rfr_iscdi=true