Loading…
Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters
This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with s...
Saved in:
Published in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-04, Vol.51 (4), p.2246-2257 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733 |
container_end_page | 2257 |
container_issue | 4 |
container_start_page | 2246 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 51 |
creator | Wang, Jiahui Luo, Wensheng Liu, Jianxing Wu, Ligang |
description | This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results. |
doi_str_mv | 10.1109/TSMC.2019.2911721 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2019_2911721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8710611</ieee_id><sourcerecordid>2503499302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</originalsourceid><addsrcrecordid>eNo9kFFrwjAQx8PYYOL8AGMvgT3X5ZIlbR61zm2gbqB7DrW5joo2XVKFfvu1KD7dcfz-d8ePkEdgYwCmXzbrZTrmDPSYa4CYww0ZcFBJxLngt9ce1D0ZhbBjjAFPlGBqQL4nNqub8oR009YYcTpfraJpFtDSWVtlhzKn631py-qXLp1Fmrqq8W5PXUFnaTRL6dS50PTjE_oGfXggd0W2Dzi61CH5mb9t0o9o8fX-mU4WUc61aCLLE7HVmDANCIXKwMruSUAupFBbsHEiWa5kbhUIWWQoC6XyXEiWxPEWYiGG5Pm8t_bu74ihMTt39FV30nDJxKvWgvGOgjOVexeCx8LUvjxkvjXATO_O9O5M785c3HWZp3OmRMQrn8TAFID4ByDFZvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499302</pqid></control><display><type>article</type><title>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Jiahui ; Luo, Wensheng ; Liu, Jianxing ; Wu, Ligang</creator><creatorcontrib>Wang, Jiahui ; Luo, Wensheng ; Liu, Jianxing ; Wu, Ligang</creatorcontrib><description>This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2019.2911721</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Algorithms ; Artificial neural networks ; Capacitors ; Converters ; DC–DC boost converter ; Electric potential ; Fuzzy control ; Fuzzy logic ; Fuzzy neural networks ; fuzzy sets ; Inductors ; interval type-2 fuzzy neural network (IT2FNN) ; Legislation ; Machine learning ; membership function ; Neural networks ; Parameter uncertainty ; Perturbation ; Perturbation methods ; Sliding mode control ; sliding mode control (SMC) ; Tracking errors ; Uncertainty ; Voltage ; Voltage control ; Voltage converters (DC to DC)</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-04, Vol.51 (4), p.2246-2257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</citedby><cites>FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</cites><orcidid>0000-0002-8516-4498 ; 0000-0001-8198-5267 ; 0000-0001-8743-6728 ; 0000-0002-2201-3887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8710611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Jiahui</creatorcontrib><creatorcontrib>Luo, Wensheng</creatorcontrib><creatorcontrib>Liu, Jianxing</creatorcontrib><creatorcontrib>Wu, Ligang</creatorcontrib><title>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Capacitors</subject><subject>Converters</subject><subject>DC–DC boost converter</subject><subject>Electric potential</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>fuzzy sets</subject><subject>Inductors</subject><subject>interval type-2 fuzzy neural network (IT2FNN)</subject><subject>Legislation</subject><subject>Machine learning</subject><subject>membership function</subject><subject>Neural networks</subject><subject>Parameter uncertainty</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Sliding mode control</subject><subject>sliding mode control (SMC)</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Voltage converters (DC to DC)</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFFrwjAQx8PYYOL8AGMvgT3X5ZIlbR61zm2gbqB7DrW5joo2XVKFfvu1KD7dcfz-d8ePkEdgYwCmXzbrZTrmDPSYa4CYww0ZcFBJxLngt9ce1D0ZhbBjjAFPlGBqQL4nNqub8oR009YYcTpfraJpFtDSWVtlhzKn631py-qXLp1Fmrqq8W5PXUFnaTRL6dS50PTjE_oGfXggd0W2Dzi61CH5mb9t0o9o8fX-mU4WUc61aCLLE7HVmDANCIXKwMruSUAupFBbsHEiWa5kbhUIWWQoC6XyXEiWxPEWYiGG5Pm8t_bu74ihMTt39FV30nDJxKvWgvGOgjOVexeCx8LUvjxkvjXATO_O9O5M785c3HWZp3OmRMQrn8TAFID4ByDFZvQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Jiahui</creator><creator>Luo, Wensheng</creator><creator>Liu, Jianxing</creator><creator>Wu, Ligang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8516-4498</orcidid><orcidid>https://orcid.org/0000-0001-8198-5267</orcidid><orcidid>https://orcid.org/0000-0001-8743-6728</orcidid><orcidid>https://orcid.org/0000-0002-2201-3887</orcidid></search><sort><creationdate>20210401</creationdate><title>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</title><author>Wang, Jiahui ; Luo, Wensheng ; Liu, Jianxing ; Wu, Ligang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Capacitors</topic><topic>Converters</topic><topic>DC–DC boost converter</topic><topic>Electric potential</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>fuzzy sets</topic><topic>Inductors</topic><topic>interval type-2 fuzzy neural network (IT2FNN)</topic><topic>Legislation</topic><topic>Machine learning</topic><topic>membership function</topic><topic>Neural networks</topic><topic>Parameter uncertainty</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Sliding mode control</topic><topic>sliding mode control (SMC)</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Voltage converters (DC to DC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiahui</creatorcontrib><creatorcontrib>Luo, Wensheng</creatorcontrib><creatorcontrib>Liu, Jianxing</creatorcontrib><creatorcontrib>Wu, Ligang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiahui</au><au>Luo, Wensheng</au><au>Liu, Jianxing</au><au>Wu, Ligang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>51</volume><issue>4</issue><spage>2246</spage><epage>2257</epage><pages>2246-2257</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This paper proposes a dynamic sliding mode control (SMC) approach to the robust voltage regulation of dc-dc boost converters by using interval type-2 fuzzy neural networks (IT2FNNs). First, uncertainties caused by the perturbation of the input inductor and the output capacitor are represented with some bounded approximation errors, by the utilization of a Takagi-Sugeno (T-S) fuzzy modeling approach. Based on the represented model of the boost converter, a new type of sliding surface is designed depending on the duty cycle and reference inputs of the converter. Then, a dynamic SMC law is designed, by considering that the perturbation of the uncertain parameters, including input inductor, output capacitor, load resistor, and input voltage, is bounded. Meanwhile, we adopt an exponential plus power approaching law in the sliding mode controller for fast reachability of the sliding surface and a small chattering in the duty cycle input. Moreover, in terms of the considered uncertainties, a novel IT2FNN-based dynamic SMC law is derived, by applying simplified ellipsoidal-type membership functions in the type-2 fuzzy neural network. To improve the capacity to manage the uncertainties, some online learning algorithms for the updating of the IT2FNN are designed by a gradient descent method (GDM), without the requirement of the boundedness of the uncertainties. The resulting tracking error system is synthesized to be bounded stable based on the designed IT2FNN-based dynamic SMC. Finally, the effectiveness of the proposed adaptive IT2FNN-based dynamic SMC method is verified by some comparative simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2019.2911721</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8516-4498</orcidid><orcidid>https://orcid.org/0000-0001-8198-5267</orcidid><orcidid>https://orcid.org/0000-0001-8743-6728</orcidid><orcidid>https://orcid.org/0000-0002-2201-3887</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2021-04, Vol.51 (4), p.2246-2257 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSMC_2019_2911721 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive control Algorithms Artificial neural networks Capacitors Converters DC–DC boost converter Electric potential Fuzzy control Fuzzy logic Fuzzy neural networks fuzzy sets Inductors interval type-2 fuzzy neural network (IT2FNN) Legislation Machine learning membership function Neural networks Parameter uncertainty Perturbation Perturbation methods Sliding mode control sliding mode control (SMC) Tracking errors Uncertainty Voltage Voltage control Voltage converters (DC to DC) |
title | Adaptive Type-2 FNN-Based Dynamic Sliding Mode Control of DC-DC Boost Converters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Type-2%20FNN-Based%20Dynamic%20Sliding%20Mode%20Control%20of%20DC-DC%20Boost%20Converters&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Wang,%20Jiahui&rft.date=2021-04-01&rft.volume=51&rft.issue=4&rft.spage=2246&rft.epage=2257&rft.pages=2246-2257&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2019.2911721&rft_dat=%3Cproquest_cross%3E2503499302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-d283b9e8091e1f6a1d51681e23536b1d7850c65cd6135fae5f66cc350877b1733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503499302&rft_id=info:pmid/&rft_ieee_id=8710611&rfr_iscdi=true |