Loading…

Optimal Asynchronous Control of Discrete-Time Hidden Markov Jump Systems With Complex Transition Probabilities

In this article, we focus on the asynchronous \mathscr{H}_{\infty} control problem for discrete-time hidden Markov jump systems (MJSs) with complex mode transition probabilities (C-TPs). The significance of this study can be revealed as follows. First, a hidden Markov model (HMM) is used to estima...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2024-02, Vol.54 (2), p.1-9
Main Authors: Tao, Yue-Yue, Wu, Zheng-Guang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-ee9dd4a039f6cf2aec01f12ae0939db999d77f5c90904ea47d5d9f4bf79a4313
container_end_page 9
container_issue 2
container_start_page 1
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 54
creator Tao, Yue-Yue
Wu, Zheng-Guang
description In this article, we focus on the asynchronous \mathscr{H}_{\infty} control problem for discrete-time hidden Markov jump systems (MJSs) with complex mode transition probabilities (C-TPs). The significance of this study can be revealed as follows. First, a hidden Markov model (HMM) is used to estimate the system mode, which cannot always be accurately detected in practical scenarios. Second, the TPs of the Markov process are commonly difficult to be precisely obtained in practical scenarios; hence, some TPs of the Markov process could be unknown or imprecise, resulting in the C-TPs circumstances. Particularly, when taking the HMM into consideration, the C-TPs can also appear in the conditional TPs of the joint process. Therefore, in this work, we consider that the C-TPs may simultaneously exist in both processes of the HMM, which is more practical for hidden MJSs. Additionally, the established results can cover some special cases, for instance, the cases in which C-TPs only exist in one of the processes or neither. The Markov and the joint processes of the HMM are separated by a mode separation strategy so that the C-TPs of them can be, respectively, addressed. Furthermore, only necessary conservatism in dealing with the C-TPs is further introduced. Specifically, when the TPs are perfectly known, the established results can be reduced to an existing result without increasing conservatism. Two examples are presented to demonstrate the effectiveness of the developed results.
doi_str_mv 10.1109/TSMC.2023.3324364
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2023_3324364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10299717</ieee_id><sourcerecordid>2915723084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ee9dd4a039f6cf2aec01f12ae0939db999d77f5c90904ea47d5d9f4bf79a4313</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOZ-gOBFwOvOfK1dLkf9mLIxYQUvQ9qesMw2qUkr7t_bsSFevefA854DTxTdEjwlBIuHfLvOphRTNmWMcpbwi2hESTKPKWX08m8myXU0CWGPMSZ0njCcjCK7aTvTqBotwsGWO--s6wPKnO28q5HT6NGE0kMHcW4aQEtTVWDRWvlP943e-qZF20PooAnow3S7odi0Nfyg3CsbTGecRe_eFaow9bBBuImutKoDTM45jvLnpzxbxqvNy2u2WMUl5UkXA4iq4gozoZNSUwUlJpoMiQUTVSGEqNJUz0qBBeageFrNKqF5oVOhOCNsHN2fzrbeffUQOrl3vbfDR0kFmaWU4TkfKHKiSu9C8KBl6wcX_iAJlkex8ihWHsXKs9ihc3fqGAD4x1MhUpKyXz8udiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915723084</pqid></control><display><type>article</type><title>Optimal Asynchronous Control of Discrete-Time Hidden Markov Jump Systems With Complex Transition Probabilities</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tao, Yue-Yue ; Wu, Zheng-Guang</creator><creatorcontrib>Tao, Yue-Yue ; Wu, Zheng-Guang</creatorcontrib><description>In this article, we focus on the asynchronous &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathscr{H}_{\infty}&lt;/tex-math&gt; &lt;/inline-formula&gt; control problem for discrete-time hidden Markov jump systems (MJSs) with complex mode transition probabilities (C-TPs). The significance of this study can be revealed as follows. First, a hidden Markov model (HMM) is used to estimate the system mode, which cannot always be accurately detected in practical scenarios. Second, the TPs of the Markov process are commonly difficult to be precisely obtained in practical scenarios; hence, some TPs of the Markov process could be unknown or imprecise, resulting in the C-TPs circumstances. Particularly, when taking the HMM into consideration, the C-TPs can also appear in the conditional TPs of the joint process. Therefore, in this work, we consider that the C-TPs may simultaneously exist in both processes of the HMM, which is more practical for hidden MJSs. Additionally, the established results can cover some special cases, for instance, the cases in which C-TPs only exist in one of the processes or neither. The Markov and the joint processes of the HMM are separated by a mode separation strategy so that the C-TPs of them can be, respectively, addressed. Furthermore, only necessary conservatism in dealing with the C-TPs is further introduced. Specifically, when the TPs are perfectly known, the established results can be reduced to an existing result without increasing conservatism. Two examples are presented to demonstrate the effectiveness of the developed results.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2023.3324364</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathscr{H}_{\infty}&lt;/tex-math&gt; &lt;/inline-formula&gt; control ; Complex transition probabilities ; Cybernetics ; hidden Markov model (HMM) ; Hidden Markov models ; Markov analysis ; Markov chains ; Markov jump systems (MJSs) ; Markov processes ; Stability criteria ; Transforms ; Transition probabilities ; Uncertainty ; Upper bound</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2024-02, Vol.54 (2), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ee9dd4a039f6cf2aec01f12ae0939db999d77f5c90904ea47d5d9f4bf79a4313</cites><orcidid>0000-0003-1382-9953 ; 0000-0003-4460-9785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10299717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Tao, Yue-Yue</creatorcontrib><creatorcontrib>Wu, Zheng-Guang</creatorcontrib><title>Optimal Asynchronous Control of Discrete-Time Hidden Markov Jump Systems With Complex Transition Probabilities</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>In this article, we focus on the asynchronous &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathscr{H}_{\infty}&lt;/tex-math&gt; &lt;/inline-formula&gt; control problem for discrete-time hidden Markov jump systems (MJSs) with complex mode transition probabilities (C-TPs). The significance of this study can be revealed as follows. First, a hidden Markov model (HMM) is used to estimate the system mode, which cannot always be accurately detected in practical scenarios. Second, the TPs of the Markov process are commonly difficult to be precisely obtained in practical scenarios; hence, some TPs of the Markov process could be unknown or imprecise, resulting in the C-TPs circumstances. Particularly, when taking the HMM into consideration, the C-TPs can also appear in the conditional TPs of the joint process. Therefore, in this work, we consider that the C-TPs may simultaneously exist in both processes of the HMM, which is more practical for hidden MJSs. Additionally, the established results can cover some special cases, for instance, the cases in which C-TPs only exist in one of the processes or neither. The Markov and the joint processes of the HMM are separated by a mode separation strategy so that the C-TPs of them can be, respectively, addressed. Furthermore, only necessary conservatism in dealing with the C-TPs is further introduced. Specifically, when the TPs are perfectly known, the established results can be reduced to an existing result without increasing conservatism. Two examples are presented to demonstrate the effectiveness of the developed results.</description><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathscr{H}_{\infty}&lt;/tex-math&gt; &lt;/inline-formula&gt; control</subject><subject>Complex transition probabilities</subject><subject>Cybernetics</subject><subject>hidden Markov model (HMM)</subject><subject>Hidden Markov models</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov jump systems (MJSs)</subject><subject>Markov processes</subject><subject>Stability criteria</subject><subject>Transforms</subject><subject>Transition probabilities</subject><subject>Uncertainty</subject><subject>Upper bound</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhosoOOZ-gOBFwOvOfK1dLkf9mLIxYQUvQ9qesMw2qUkr7t_bsSFevefA854DTxTdEjwlBIuHfLvOphRTNmWMcpbwi2hESTKPKWX08m8myXU0CWGPMSZ0njCcjCK7aTvTqBotwsGWO--s6wPKnO28q5HT6NGE0kMHcW4aQEtTVWDRWvlP943e-qZF20PooAnow3S7odi0Nfyg3CsbTGecRe_eFaow9bBBuImutKoDTM45jvLnpzxbxqvNy2u2WMUl5UkXA4iq4gozoZNSUwUlJpoMiQUTVSGEqNJUz0qBBeageFrNKqF5oVOhOCNsHN2fzrbeffUQOrl3vbfDR0kFmaWU4TkfKHKiSu9C8KBl6wcX_iAJlkex8ihWHsXKs9ihc3fqGAD4x1MhUpKyXz8udiQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Tao, Yue-Yue</creator><creator>Wu, Zheng-Guang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1382-9953</orcidid><orcidid>https://orcid.org/0000-0003-4460-9785</orcidid></search><sort><creationdate>20240201</creationdate><title>Optimal Asynchronous Control of Discrete-Time Hidden Markov Jump Systems With Complex Transition Probabilities</title><author>Tao, Yue-Yue ; Wu, Zheng-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ee9dd4a039f6cf2aec01f12ae0939db999d77f5c90904ea47d5d9f4bf79a4313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathscr{H}_{\infty}&lt;/tex-math&gt; &lt;/inline-formula&gt; control</topic><topic>Complex transition probabilities</topic><topic>Cybernetics</topic><topic>hidden Markov model (HMM)</topic><topic>Hidden Markov models</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov jump systems (MJSs)</topic><topic>Markov processes</topic><topic>Stability criteria</topic><topic>Transforms</topic><topic>Transition probabilities</topic><topic>Uncertainty</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Yue-Yue</creatorcontrib><creatorcontrib>Wu, Zheng-Guang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Yue-Yue</au><au>Wu, Zheng-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Asynchronous Control of Discrete-Time Hidden Markov Jump Systems With Complex Transition Probabilities</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>54</volume><issue>2</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>In this article, we focus on the asynchronous &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathscr{H}_{\infty}&lt;/tex-math&gt; &lt;/inline-formula&gt; control problem for discrete-time hidden Markov jump systems (MJSs) with complex mode transition probabilities (C-TPs). The significance of this study can be revealed as follows. First, a hidden Markov model (HMM) is used to estimate the system mode, which cannot always be accurately detected in practical scenarios. Second, the TPs of the Markov process are commonly difficult to be precisely obtained in practical scenarios; hence, some TPs of the Markov process could be unknown or imprecise, resulting in the C-TPs circumstances. Particularly, when taking the HMM into consideration, the C-TPs can also appear in the conditional TPs of the joint process. Therefore, in this work, we consider that the C-TPs may simultaneously exist in both processes of the HMM, which is more practical for hidden MJSs. Additionally, the established results can cover some special cases, for instance, the cases in which C-TPs only exist in one of the processes or neither. The Markov and the joint processes of the HMM are separated by a mode separation strategy so that the C-TPs of them can be, respectively, addressed. Furthermore, only necessary conservatism in dealing with the C-TPs is further introduced. Specifically, when the TPs are perfectly known, the established results can be reduced to an existing result without increasing conservatism. Two examples are presented to demonstrate the effectiveness of the developed results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2023.3324364</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1382-9953</orcidid><orcidid>https://orcid.org/0000-0003-4460-9785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2024-02, Vol.54 (2), p.1-9
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2023_3324364
source IEEE Electronic Library (IEL) Journals
subjects <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mathscr{H}_{\infty}</tex-math> </inline-formula> control
Complex transition probabilities
Cybernetics
hidden Markov model (HMM)
Hidden Markov models
Markov analysis
Markov chains
Markov jump systems (MJSs)
Markov processes
Stability criteria
Transforms
Transition probabilities
Uncertainty
Upper bound
title Optimal Asynchronous Control of Discrete-Time Hidden Markov Jump Systems With Complex Transition Probabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Asynchronous%20Control%20of%20Discrete-Time%20Hidden%20Markov%20Jump%20Systems%20With%20Complex%20Transition%20Probabilities&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Tao,%20Yue-Yue&rft.date=2024-02-01&rft.volume=54&rft.issue=2&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2023.3324364&rft_dat=%3Cproquest_cross%3E2915723084%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-ee9dd4a039f6cf2aec01f12ae0939db999d77f5c90904ea47d5d9f4bf79a4313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915723084&rft_id=info:pmid/&rft_ieee_id=10299717&rfr_iscdi=true