Loading…
Improved Yield Through Use of a Scalable Parametric Measurement Macro
Incorporating a scalable parametric measurement (SPM) macro in semiconductor products enables N to P ratio screening at wafer test where each die can be tested. While in line scribe line measurements provide valuable feedback to correct manufacturing problems, in line test sample sizes and the need...
Saved in:
Published in: | IEEE transactions on semiconductor manufacturing 2011-05, Vol.24 (2), p.190-196 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Incorporating a scalable parametric measurement (SPM) macro in semiconductor products enables N to P ratio screening at wafer test where each die can be tested. While in line scribe line measurements provide valuable feedback to correct manufacturing problems, in line test sample sizes and the need to disposition entire wafers limit the usefulness of this technique as a product screen. Functional patterns applied at module test provide a measure of protection against escapes to system level, but module yield loss results in higher cost than wafer yield loss because of the added loss of package and module test costs. Use of a SPM macro for N to P ratio disposition maximizes yield and minimizes false rejects and false accepts. |
---|---|
ISSN: | 0894-6507 1558-2345 |
DOI: | 10.1109/TSM.2011.2116127 |