Loading…

Attention Mechanism-Based Root Cause Analysis for Semiconductor Yield Enhancement Considering the Order of Manufacturing Processes

In semiconductor manufacturing processes, yield analysis aims to increase the yield by determining and managing the causes of low yield. The variable data collected from semiconductor manufacturing processes, in which hundreds of unit processes are implemented according to specific conditions and se...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on semiconductor manufacturing 2022-05, Vol.35 (2), p.282-290
Main Authors: Lee, Min Yong, Choi, Yeoung Je, Lee, Gyeong Taek, Choi, Jongkwan, Kim, Chang Ouk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-23ac05d9aaa89bac4f195631cd5f9e55817e7add2a1988537c7f8acf0d5529083
cites cdi_FETCH-LOGICAL-c291t-23ac05d9aaa89bac4f195631cd5f9e55817e7add2a1988537c7f8acf0d5529083
container_end_page 290
container_issue 2
container_start_page 282
container_title IEEE transactions on semiconductor manufacturing
container_volume 35
creator Lee, Min Yong
Choi, Yeoung Je
Lee, Gyeong Taek
Choi, Jongkwan
Kim, Chang Ouk
description In semiconductor manufacturing processes, yield analysis aims to increase the yield by determining and managing the causes of low yield. The variable data collected from semiconductor manufacturing processes, in which hundreds of unit processes are implemented according to specific conditions and sequences, are interdependent, and the variables related to previous processes influence the variables in subsequent processes. Therefore, the order of processes should be considered when building a model that searches for the causes of low yield. However, there have been few studies in this area. This paper proposes a low-yield root cause search method considering the order of processes using a long short-term memory with attention mechanism (LSTM-AM) model. Specifically, the LSTM-AM model is applied to data classified according to the process structure of semiconductor products, and the causes of low yield are determined considering the order of processes by extracting attention weights. Experiments are conducted to verify the suitability of the proposed method using real yield data from a semiconductor company. The experimental results confirm that the proposed method outperforms the existing low yield root cause search methods in terms of low yield prediction.
doi_str_mv 10.1109/TSM.2022.3156600
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSM_2022_3156600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9728753</ieee_id><sourcerecordid>2660159457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-23ac05d9aaa89bac4f195631cd5f9e55817e7add2a1988537c7f8acf0d5529083</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWD_ugpeA561JdtNsjrX4BS0VWw-elpi82JQ20SR76NW_3GjF02N4MwPzQ-iCkiGlRF4vF7MhI4wNa8pHI0IO0IBy3lasbvghGpBWNtWIE3GMTlJaE0KbRooB-hrnDD674PEM9Ep5l7bVjUpg8HMIGU9UnwCPvdrskkvYhogXsHU6eNPrXNSrg43Bt75ENWxLFZ4En5yB6Pw7zivA81gEDhbPlO-t0rn_fT3FoCElSGfoyKpNgvO_e4pe7m6Xk4dqOr9_nIynlWaS5jJEacKNVEq18k3pxlLJRzXVhlsJZSoVIJQxTFHZtrwWWthWaUsM50yStj5FV_vejxg-e0i5W4c-lmWpY4UY5bLhorjI3qVjSCmC7T6i26q46yjpfkh3hXT3Q7r7I10il_uIA4B_uxSsFbyuvwEP4HwP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660159457</pqid></control><display><type>article</type><title>Attention Mechanism-Based Root Cause Analysis for Semiconductor Yield Enhancement Considering the Order of Manufacturing Processes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Min Yong ; Choi, Yeoung Je ; Lee, Gyeong Taek ; Choi, Jongkwan ; Kim, Chang Ouk</creator><creatorcontrib>Lee, Min Yong ; Choi, Yeoung Je ; Lee, Gyeong Taek ; Choi, Jongkwan ; Kim, Chang Ouk</creatorcontrib><description>In semiconductor manufacturing processes, yield analysis aims to increase the yield by determining and managing the causes of low yield. The variable data collected from semiconductor manufacturing processes, in which hundreds of unit processes are implemented according to specific conditions and sequences, are interdependent, and the variables related to previous processes influence the variables in subsequent processes. Therefore, the order of processes should be considered when building a model that searches for the causes of low yield. However, there have been few studies in this area. This paper proposes a low-yield root cause search method considering the order of processes using a long short-term memory with attention mechanism (LSTM-AM) model. Specifically, the LSTM-AM model is applied to data classified according to the process structure of semiconductor products, and the causes of low yield are determined considering the order of processes by extracting attention weights. Experiments are conducted to verify the suitability of the proposed method using real yield data from a semiconductor company. The experimental results confirm that the proposed method outperforms the existing low yield root cause search methods in terms of low yield prediction.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2022.3156600</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention mechanism ; Chemicals ; Data models ; Etching ; interaction effects ; Ions ; Logic gates ; long short-term memory ; Manufacturing ; Root cause analysis ; Search methods ; Semiconductor device manufacture ; Semiconductor device modeling ; semiconductor manufacturing ; variable selection ; yield analysis</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.282-290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-23ac05d9aaa89bac4f195631cd5f9e55817e7add2a1988537c7f8acf0d5529083</citedby><cites>FETCH-LOGICAL-c291t-23ac05d9aaa89bac4f195631cd5f9e55817e7add2a1988537c7f8acf0d5529083</cites><orcidid>0000-0001-6853-2191 ; 0000-0002-9727-9620 ; 0000-0002-6936-5409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9728753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Lee, Min Yong</creatorcontrib><creatorcontrib>Choi, Yeoung Je</creatorcontrib><creatorcontrib>Lee, Gyeong Taek</creatorcontrib><creatorcontrib>Choi, Jongkwan</creatorcontrib><creatorcontrib>Kim, Chang Ouk</creatorcontrib><title>Attention Mechanism-Based Root Cause Analysis for Semiconductor Yield Enhancement Considering the Order of Manufacturing Processes</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>In semiconductor manufacturing processes, yield analysis aims to increase the yield by determining and managing the causes of low yield. The variable data collected from semiconductor manufacturing processes, in which hundreds of unit processes are implemented according to specific conditions and sequences, are interdependent, and the variables related to previous processes influence the variables in subsequent processes. Therefore, the order of processes should be considered when building a model that searches for the causes of low yield. However, there have been few studies in this area. This paper proposes a low-yield root cause search method considering the order of processes using a long short-term memory with attention mechanism (LSTM-AM) model. Specifically, the LSTM-AM model is applied to data classified according to the process structure of semiconductor products, and the causes of low yield are determined considering the order of processes by extracting attention weights. Experiments are conducted to verify the suitability of the proposed method using real yield data from a semiconductor company. The experimental results confirm that the proposed method outperforms the existing low yield root cause search methods in terms of low yield prediction.</description><subject>Attention mechanism</subject><subject>Chemicals</subject><subject>Data models</subject><subject>Etching</subject><subject>interaction effects</subject><subject>Ions</subject><subject>Logic gates</subject><subject>long short-term memory</subject><subject>Manufacturing</subject><subject>Root cause analysis</subject><subject>Search methods</subject><subject>Semiconductor device manufacture</subject><subject>Semiconductor device modeling</subject><subject>semiconductor manufacturing</subject><subject>variable selection</subject><subject>yield analysis</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEUxIMoWD_ugpeA561JdtNsjrX4BS0VWw-elpi82JQ20SR76NW_3GjF02N4MwPzQ-iCkiGlRF4vF7MhI4wNa8pHI0IO0IBy3lasbvghGpBWNtWIE3GMTlJaE0KbRooB-hrnDD674PEM9Ep5l7bVjUpg8HMIGU9UnwCPvdrskkvYhogXsHU6eNPrXNSrg43Bt75ENWxLFZ4En5yB6Pw7zivA81gEDhbPlO-t0rn_fT3FoCElSGfoyKpNgvO_e4pe7m6Xk4dqOr9_nIynlWaS5jJEacKNVEq18k3pxlLJRzXVhlsJZSoVIJQxTFHZtrwWWthWaUsM50yStj5FV_vejxg-e0i5W4c-lmWpY4UY5bLhorjI3qVjSCmC7T6i26q46yjpfkh3hXT3Q7r7I10il_uIA4B_uxSsFbyuvwEP4HwP</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Lee, Min Yong</creator><creator>Choi, Yeoung Je</creator><creator>Lee, Gyeong Taek</creator><creator>Choi, Jongkwan</creator><creator>Kim, Chang Ouk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6853-2191</orcidid><orcidid>https://orcid.org/0000-0002-9727-9620</orcidid><orcidid>https://orcid.org/0000-0002-6936-5409</orcidid></search><sort><creationdate>20220501</creationdate><title>Attention Mechanism-Based Root Cause Analysis for Semiconductor Yield Enhancement Considering the Order of Manufacturing Processes</title><author>Lee, Min Yong ; Choi, Yeoung Je ; Lee, Gyeong Taek ; Choi, Jongkwan ; Kim, Chang Ouk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-23ac05d9aaa89bac4f195631cd5f9e55817e7add2a1988537c7f8acf0d5529083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>Chemicals</topic><topic>Data models</topic><topic>Etching</topic><topic>interaction effects</topic><topic>Ions</topic><topic>Logic gates</topic><topic>long short-term memory</topic><topic>Manufacturing</topic><topic>Root cause analysis</topic><topic>Search methods</topic><topic>Semiconductor device manufacture</topic><topic>Semiconductor device modeling</topic><topic>semiconductor manufacturing</topic><topic>variable selection</topic><topic>yield analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Min Yong</creatorcontrib><creatorcontrib>Choi, Yeoung Je</creatorcontrib><creatorcontrib>Lee, Gyeong Taek</creatorcontrib><creatorcontrib>Choi, Jongkwan</creatorcontrib><creatorcontrib>Kim, Chang Ouk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Min Yong</au><au>Choi, Yeoung Je</au><au>Lee, Gyeong Taek</au><au>Choi, Jongkwan</au><au>Kim, Chang Ouk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention Mechanism-Based Root Cause Analysis for Semiconductor Yield Enhancement Considering the Order of Manufacturing Processes</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>282</spage><epage>290</epage><pages>282-290</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>In semiconductor manufacturing processes, yield analysis aims to increase the yield by determining and managing the causes of low yield. The variable data collected from semiconductor manufacturing processes, in which hundreds of unit processes are implemented according to specific conditions and sequences, are interdependent, and the variables related to previous processes influence the variables in subsequent processes. Therefore, the order of processes should be considered when building a model that searches for the causes of low yield. However, there have been few studies in this area. This paper proposes a low-yield root cause search method considering the order of processes using a long short-term memory with attention mechanism (LSTM-AM) model. Specifically, the LSTM-AM model is applied to data classified according to the process structure of semiconductor products, and the causes of low yield are determined considering the order of processes by extracting attention weights. Experiments are conducted to verify the suitability of the proposed method using real yield data from a semiconductor company. The experimental results confirm that the proposed method outperforms the existing low yield root cause search methods in terms of low yield prediction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2022.3156600</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6853-2191</orcidid><orcidid>https://orcid.org/0000-0002-9727-9620</orcidid><orcidid>https://orcid.org/0000-0002-6936-5409</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.282-290
issn 0894-6507
1558-2345
language eng
recordid cdi_crossref_primary_10_1109_TSM_2022_3156600
source IEEE Electronic Library (IEL) Journals
subjects Attention mechanism
Chemicals
Data models
Etching
interaction effects
Ions
Logic gates
long short-term memory
Manufacturing
Root cause analysis
Search methods
Semiconductor device manufacture
Semiconductor device modeling
semiconductor manufacturing
variable selection
yield analysis
title Attention Mechanism-Based Root Cause Analysis for Semiconductor Yield Enhancement Considering the Order of Manufacturing Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention%20Mechanism-Based%20Root%20Cause%20Analysis%20for%20Semiconductor%20Yield%20Enhancement%20Considering%20the%20Order%20of%20Manufacturing%20Processes&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Lee,%20Min%20Yong&rft.date=2022-05-01&rft.volume=35&rft.issue=2&rft.spage=282&rft.epage=290&rft.pages=282-290&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2022.3156600&rft_dat=%3Cproquest_cross%3E2660159457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-23ac05d9aaa89bac4f195631cd5f9e55817e7add2a1988537c7f8acf0d5529083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660159457&rft_id=info:pmid/&rft_ieee_id=9728753&rfr_iscdi=true