Loading…

A new framework for complex wavelet transforms

Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce two-stage mapping-based complex wavelet transform...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2003-07, Vol.51 (7), p.1825-1837
Main Authors: Fernandes, F.C.A., van Spaendonck, R.L.C., Burrus, C.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-6ad0ac077a92dbc1af12d2b7596b95b21bd09ae04660ca5529fc4ae35765919f3
cites cdi_FETCH-LOGICAL-c486t-6ad0ac077a92dbc1af12d2b7596b95b21bd09ae04660ca5529fc4ae35765919f3
container_end_page 1837
container_issue 7
container_start_page 1825
container_title IEEE transactions on signal processing
container_volume 51
creator Fernandes, F.C.A.
van Spaendonck, R.L.C.
Burrus, C.S.
description Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce two-stage mapping-based complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, non-redundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and non-redundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we can exploit this flexibility to create the complex double-density DWT (CDDWT): a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3/sup m/-1/2/sup m/-1) in m dimensions. To the best of our knowledge, no other transform achieves all these properties at a lower redundancy.
doi_str_mv 10.1109/TSP.2003.812841
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2003_812841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1206692</ieee_id><sourcerecordid>907962365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-6ad0ac077a92dbc1af12d2b7596b95b21bd09ae04660ca5529fc4ae35765919f3</originalsourceid><addsrcrecordid>eNp9kMtLw0AQhxdRsFbPHrwEQT0lnX0meyzFFxQUrOBt2Ww2kJpH3U1b_e_dkkLBg5eZgd83A_MhdIkhwRjkZPH2mhAAmmSYZAwfoRGWDMfAUnEcZuA05ln6cYrOvF8CYMakGKFkGrV2G5VON3bbuc-o7FxkumZV2-9oqze2tn3UO936EDT-HJ2Uuvb2Yt_H6P3hfjF7iucvj8-z6Tw2LBN9LHQB2kCaakmK3GBdYlKQPOVS5JLnBOcFSG2BCQFGc05kaZi2lKeCSyxLOkZ3w92V677W1veqqbyxda1b2629kpBKQajggbz9lwwuJCeMBvD6D7js1q4NX6gs-MpoqAGaDJBxnffOlmrlqka7H4VB7TSroFntNKtBc9i42Z_V3ug6iGxN5Q9rLJOUkx13NXCVtfYQExBCEvoLPpKD5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884183884</pqid></control><display><type>article</type><title>A new framework for complex wavelet transforms</title><source>IEEE Xplore (Online service)</source><creator>Fernandes, F.C.A. ; van Spaendonck, R.L.C. ; Burrus, C.S.</creator><creatorcontrib>Fernandes, F.C.A. ; van Spaendonck, R.L.C. ; Burrus, C.S.</creatorcontrib><description>Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce two-stage mapping-based complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, non-redundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and non-redundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we can exploit this flexibility to create the complex double-density DWT (CDDWT): a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3/sup m/-1/2/sup m/-1) in m dimensions. To the best of our knowledge, no other transform achieves all these properties at a lower redundancy.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2003.812841</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Continuous wavelet transforms ; Discrete transforms ; Discrete wavelet transforms ; Exact sciences and technology ; Filter bank ; Flexibility ; Function space ; Hilbert space ; Image coding ; Image processing ; Information, signal and communications theory ; Instruments ; Mapping ; Redundancy ; Signal processing ; Telecommunications and information theory ; Transforms ; Wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2003-07, Vol.51 (7), p.1825-1837</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-6ad0ac077a92dbc1af12d2b7596b95b21bd09ae04660ca5529fc4ae35765919f3</citedby><cites>FETCH-LOGICAL-c486t-6ad0ac077a92dbc1af12d2b7596b95b21bd09ae04660ca5529fc4ae35765919f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1206692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14893521$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, F.C.A.</creatorcontrib><creatorcontrib>van Spaendonck, R.L.C.</creatorcontrib><creatorcontrib>Burrus, C.S.</creatorcontrib><title>A new framework for complex wavelet transforms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce two-stage mapping-based complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, non-redundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and non-redundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we can exploit this flexibility to create the complex double-density DWT (CDDWT): a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3/sup m/-1/2/sup m/-1) in m dimensions. To the best of our knowledge, no other transform achieves all these properties at a lower redundancy.</description><subject>Applied sciences</subject><subject>Continuous wavelet transforms</subject><subject>Discrete transforms</subject><subject>Discrete wavelet transforms</subject><subject>Exact sciences and technology</subject><subject>Filter bank</subject><subject>Flexibility</subject><subject>Function space</subject><subject>Hilbert space</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Instruments</subject><subject>Mapping</subject><subject>Redundancy</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>Wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLw0AQhxdRsFbPHrwEQT0lnX0meyzFFxQUrOBt2Ww2kJpH3U1b_e_dkkLBg5eZgd83A_MhdIkhwRjkZPH2mhAAmmSYZAwfoRGWDMfAUnEcZuA05ln6cYrOvF8CYMakGKFkGrV2G5VON3bbuc-o7FxkumZV2-9oqze2tn3UO936EDT-HJ2Uuvb2Yt_H6P3hfjF7iucvj8-z6Tw2LBN9LHQB2kCaakmK3GBdYlKQPOVS5JLnBOcFSG2BCQFGc05kaZi2lKeCSyxLOkZ3w92V677W1veqqbyxda1b2629kpBKQajggbz9lwwuJCeMBvD6D7js1q4NX6gs-MpoqAGaDJBxnffOlmrlqka7H4VB7TSroFntNKtBc9i42Z_V3ug6iGxN5Q9rLJOUkx13NXCVtfYQExBCEvoLPpKD5Q</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Fernandes, F.C.A.</creator><creator>van Spaendonck, R.L.C.</creator><creator>Burrus, C.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030701</creationdate><title>A new framework for complex wavelet transforms</title><author>Fernandes, F.C.A. ; van Spaendonck, R.L.C. ; Burrus, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-6ad0ac077a92dbc1af12d2b7596b95b21bd09ae04660ca5529fc4ae35765919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Continuous wavelet transforms</topic><topic>Discrete transforms</topic><topic>Discrete wavelet transforms</topic><topic>Exact sciences and technology</topic><topic>Filter bank</topic><topic>Flexibility</topic><topic>Function space</topic><topic>Hilbert space</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Instruments</topic><topic>Mapping</topic><topic>Redundancy</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, F.C.A.</creatorcontrib><creatorcontrib>van Spaendonck, R.L.C.</creatorcontrib><creatorcontrib>Burrus, C.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, F.C.A.</au><au>van Spaendonck, R.L.C.</au><au>Burrus, C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new framework for complex wavelet transforms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2003-07-01</date><risdate>2003</risdate><volume>51</volume><issue>7</issue><spage>1825</spage><epage>1837</epage><pages>1825-1837</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce two-stage mapping-based complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, non-redundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and non-redundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we can exploit this flexibility to create the complex double-density DWT (CDDWT): a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3/sup m/-1/2/sup m/-1) in m dimensions. To the best of our knowledge, no other transform achieves all these properties at a lower redundancy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2003.812841</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2003-07, Vol.51 (7), p.1825-1837
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2003_812841
source IEEE Xplore (Online service)
subjects Applied sciences
Continuous wavelet transforms
Discrete transforms
Discrete wavelet transforms
Exact sciences and technology
Filter bank
Flexibility
Function space
Hilbert space
Image coding
Image processing
Information, signal and communications theory
Instruments
Mapping
Redundancy
Signal processing
Telecommunications and information theory
Transforms
Wavelet transforms
title A new framework for complex wavelet transforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20framework%20for%20complex%20wavelet%20transforms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Fernandes,%20F.C.A.&rft.date=2003-07-01&rft.volume=51&rft.issue=7&rft.spage=1825&rft.epage=1837&rft.pages=1825-1837&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2003.812841&rft_dat=%3Cproquest_cross%3E907962365%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-6ad0ac077a92dbc1af12d2b7596b95b21bd09ae04660ca5529fc4ae35765919f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884183884&rft_id=info:pmid/&rft_ieee_id=1206692&rfr_iscdi=true