Loading…
ML-based frequency estimation and synchronization of frequency hopping signals
A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formul...
Saved in:
Published in: | IEEE transactions on signal processing 2005-02, Vol.53 (2), p.403-410 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433 |
container_end_page | 410 |
container_issue | 2 |
container_start_page | 403 |
container_title | IEEE transactions on signal processing |
container_volume | 53 |
creator | Ko, C.C. Wanjun Zhi Chin, F. |
description | A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity. |
doi_str_mv | 10.1109/TSP.2004.840703 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2004_840703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1381734</ieee_id><sourcerecordid>896189664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</originalsourceid><addsrcrecordid>eNpdkMtLAzEQhxdRsFbPHrwsgnjaNtm8jyK-oD7ACt5CNo92S5tdk-2h_vWmbqHiYZgh-ebH8GXZOQQjCIEYT9_fRiUAeMQxYAAdZAMoMCwAZvQwzYCggnD2eZydxLgAAGIs6CB7eZ4UlYrW5C7Yr7X1epPb2NUr1dWNz5U3edx4PQ-Nr7_7t8b9YedN29Z-lsd65tUynmZHLjV7tuvD7OP-bnr7WExeH55ubyaFRgR0BTFMMGUrU7LSEaUUJBUSlGtuNKooU85ghl0lSCkosoZhAxCBulTGEoMRGmbXfW4bmnRJ7OSqjtoul8rbZh0lFxSmojiRl__IRbMO21slpwJiRn7jxj2kQxNjsE62ISkIGwmB3NqVya7c2pW93bRxtYtVUaulC8rrOu7XKIYUcZ64i56rrbX7b8QhQxj9AFalg4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869147543</pqid></control><display><type>article</type><title>ML-based frequency estimation and synchronization of frequency hopping signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ko, C.C. ; Wanjun Zhi ; Chin, F.</creator><creatorcontrib>Ko, C.C. ; Wanjun Zhi ; Chin, F.</creatorcontrib><description>A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.840703</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Estimates ; Exact sciences and technology ; Frequency estimation ; Frequency hopping ; frequency hopping communication ; Frequency synchronization ; Information, signal and communications theory ; Iterative algorithms ; Iterative methods ; Kernels ; Mathematical models ; Maximum likelihood estimation ; Narrowband ; Parameter estimation ; Pilots ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Spread spectrum communication ; Synchronism ; Synchronization ; Telecommunications and information theory ; Time frequency analysis</subject><ispartof>IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.403-410</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</citedby><cites>FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1381734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16416388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, C.C.</creatorcontrib><creatorcontrib>Wanjun Zhi</creatorcontrib><creatorcontrib>Chin, F.</creatorcontrib><title>ML-based frequency estimation and synchronization of frequency hopping signals</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Frequency hopping</subject><subject>frequency hopping communication</subject><subject>Frequency synchronization</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Kernels</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Narrowband</subject><subject>Parameter estimation</subject><subject>Pilots</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Spread spectrum communication</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Telecommunications and information theory</subject><subject>Time frequency analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQhxdRsFbPHrwsgnjaNtm8jyK-oD7ACt5CNo92S5tdk-2h_vWmbqHiYZgh-ebH8GXZOQQjCIEYT9_fRiUAeMQxYAAdZAMoMCwAZvQwzYCggnD2eZydxLgAAGIs6CB7eZ4UlYrW5C7Yr7X1epPb2NUr1dWNz5U3edx4PQ-Nr7_7t8b9YedN29Z-lsd65tUynmZHLjV7tuvD7OP-bnr7WExeH55ubyaFRgR0BTFMMGUrU7LSEaUUJBUSlGtuNKooU85ghl0lSCkosoZhAxCBulTGEoMRGmbXfW4bmnRJ7OSqjtoul8rbZh0lFxSmojiRl__IRbMO21slpwJiRn7jxj2kQxNjsE62ISkIGwmB3NqVya7c2pW93bRxtYtVUaulC8rrOu7XKIYUcZ64i56rrbX7b8QhQxj9AFalg4s</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Ko, C.C.</creator><creator>Wanjun Zhi</creator><creator>Chin, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>ML-based frequency estimation and synchronization of frequency hopping signals</title><author>Ko, C.C. ; Wanjun Zhi ; Chin, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Frequency hopping</topic><topic>frequency hopping communication</topic><topic>Frequency synchronization</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Kernels</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Narrowband</topic><topic>Parameter estimation</topic><topic>Pilots</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Spread spectrum communication</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Telecommunications and information theory</topic><topic>Time frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, C.C.</creatorcontrib><creatorcontrib>Wanjun Zhi</creatorcontrib><creatorcontrib>Chin, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, C.C.</au><au>Wanjun Zhi</au><au>Chin, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ML-based frequency estimation and synchronization of frequency hopping signals</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>53</volume><issue>2</issue><spage>403</spage><epage>410</epage><pages>403-410</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.840703</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.403-410 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2004_840703 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Detection, estimation, filtering, equalization, prediction Estimates Exact sciences and technology Frequency estimation Frequency hopping frequency hopping communication Frequency synchronization Information, signal and communications theory Iterative algorithms Iterative methods Kernels Mathematical models Maximum likelihood estimation Narrowband Parameter estimation Pilots Signal and communications theory Signal processing algorithms Signal, noise Spread spectrum communication Synchronism Synchronization Telecommunications and information theory Time frequency analysis |
title | ML-based frequency estimation and synchronization of frequency hopping signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ML-based%20frequency%20estimation%20and%20synchronization%20of%20frequency%20hopping%20signals&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ko,%20C.C.&rft.date=2005-02-01&rft.volume=53&rft.issue=2&rft.spage=403&rft.epage=410&rft.pages=403-410&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.840703&rft_dat=%3Cproquest_cross%3E896189664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869147543&rft_id=info:pmid/&rft_ieee_id=1381734&rfr_iscdi=true |