Loading…

ML-based frequency estimation and synchronization of frequency hopping signals

A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2005-02, Vol.53 (2), p.403-410
Main Authors: Ko, C.C., Wanjun Zhi, Chin, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433
cites cdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433
container_end_page 410
container_issue 2
container_start_page 403
container_title IEEE transactions on signal processing
container_volume 53
creator Ko, C.C.
Wanjun Zhi
Chin, F.
description A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity.
doi_str_mv 10.1109/TSP.2004.840703
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2004_840703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1381734</ieee_id><sourcerecordid>896189664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</originalsourceid><addsrcrecordid>eNpdkMtLAzEQhxdRsFbPHrwsgnjaNtm8jyK-oD7ACt5CNo92S5tdk-2h_vWmbqHiYZgh-ebH8GXZOQQjCIEYT9_fRiUAeMQxYAAdZAMoMCwAZvQwzYCggnD2eZydxLgAAGIs6CB7eZ4UlYrW5C7Yr7X1epPb2NUr1dWNz5U3edx4PQ-Nr7_7t8b9YedN29Z-lsd65tUynmZHLjV7tuvD7OP-bnr7WExeH55ubyaFRgR0BTFMMGUrU7LSEaUUJBUSlGtuNKooU85ghl0lSCkosoZhAxCBulTGEoMRGmbXfW4bmnRJ7OSqjtoul8rbZh0lFxSmojiRl__IRbMO21slpwJiRn7jxj2kQxNjsE62ISkIGwmB3NqVya7c2pW93bRxtYtVUaulC8rrOu7XKIYUcZ64i56rrbX7b8QhQxj9AFalg4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869147543</pqid></control><display><type>article</type><title>ML-based frequency estimation and synchronization of frequency hopping signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ko, C.C. ; Wanjun Zhi ; Chin, F.</creator><creatorcontrib>Ko, C.C. ; Wanjun Zhi ; Chin, F.</creatorcontrib><description>A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.840703</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Estimates ; Exact sciences and technology ; Frequency estimation ; Frequency hopping ; frequency hopping communication ; Frequency synchronization ; Information, signal and communications theory ; Iterative algorithms ; Iterative methods ; Kernels ; Mathematical models ; Maximum likelihood estimation ; Narrowband ; Parameter estimation ; Pilots ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Spread spectrum communication ; Synchronism ; Synchronization ; Telecommunications and information theory ; Time frequency analysis</subject><ispartof>IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.403-410</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</citedby><cites>FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1381734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16416388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, C.C.</creatorcontrib><creatorcontrib>Wanjun Zhi</creatorcontrib><creatorcontrib>Chin, F.</creatorcontrib><title>ML-based frequency estimation and synchronization of frequency hopping signals</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Frequency hopping</subject><subject>frequency hopping communication</subject><subject>Frequency synchronization</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Kernels</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Narrowband</subject><subject>Parameter estimation</subject><subject>Pilots</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Spread spectrum communication</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Telecommunications and information theory</subject><subject>Time frequency analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQhxdRsFbPHrwsgnjaNtm8jyK-oD7ACt5CNo92S5tdk-2h_vWmbqHiYZgh-ebH8GXZOQQjCIEYT9_fRiUAeMQxYAAdZAMoMCwAZvQwzYCggnD2eZydxLgAAGIs6CB7eZ4UlYrW5C7Yr7X1epPb2NUr1dWNz5U3edx4PQ-Nr7_7t8b9YedN29Z-lsd65tUynmZHLjV7tuvD7OP-bnr7WExeH55ubyaFRgR0BTFMMGUrU7LSEaUUJBUSlGtuNKooU85ghl0lSCkosoZhAxCBulTGEoMRGmbXfW4bmnRJ7OSqjtoul8rbZh0lFxSmojiRl__IRbMO21slpwJiRn7jxj2kQxNjsE62ISkIGwmB3NqVya7c2pW93bRxtYtVUaulC8rrOu7XKIYUcZ64i56rrbX7b8QhQxj9AFalg4s</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Ko, C.C.</creator><creator>Wanjun Zhi</creator><creator>Chin, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>ML-based frequency estimation and synchronization of frequency hopping signals</title><author>Ko, C.C. ; Wanjun Zhi ; Chin, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Frequency hopping</topic><topic>frequency hopping communication</topic><topic>Frequency synchronization</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Kernels</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Narrowband</topic><topic>Parameter estimation</topic><topic>Pilots</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Spread spectrum communication</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Telecommunications and information theory</topic><topic>Time frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, C.C.</creatorcontrib><creatorcontrib>Wanjun Zhi</creatorcontrib><creatorcontrib>Chin, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, C.C.</au><au>Wanjun Zhi</au><au>Chin, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ML-based frequency estimation and synchronization of frequency hopping signals</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>53</volume><issue>2</issue><spage>403</spage><epage>410</epage><pages>403-410</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A maximum likelihood (ML)-based algorithm for frequency estimation and synchronization of frequency hopping signals is proposed in this paper. By using a two-hop signal model that incorporates the unknown hop transition time, the likelihood function of the received frequency hopping signal is formulated. A new iterative method is then derived to estimate the hopping frequencies and hop transition time. Without using any pilot signal or sync bit, the new algorithm is able to implement synchronization and frequency estimation at the same time. Unlike the time-frequency distribution (TFD) and the wavelet-based algorithms in papers by Barbarossa and Scaglione (1997) and by Khalil and Hippenstiel (1996), the new ML algorithm does not require the selection of a kernel or mother wavelet function. In addition, compared with the TFD-based algorithm, it has a better performance with a lower implementation complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.840703</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.403-410
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2004_840703
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Detection, estimation, filtering, equalization, prediction
Estimates
Exact sciences and technology
Frequency estimation
Frequency hopping
frequency hopping communication
Frequency synchronization
Information, signal and communications theory
Iterative algorithms
Iterative methods
Kernels
Mathematical models
Maximum likelihood estimation
Narrowband
Parameter estimation
Pilots
Signal and communications theory
Signal processing algorithms
Signal, noise
Spread spectrum communication
Synchronism
Synchronization
Telecommunications and information theory
Time frequency analysis
title ML-based frequency estimation and synchronization of frequency hopping signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ML-based%20frequency%20estimation%20and%20synchronization%20of%20frequency%20hopping%20signals&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ko,%20C.C.&rft.date=2005-02-01&rft.volume=53&rft.issue=2&rft.spage=403&rft.epage=410&rft.pages=403-410&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.840703&rft_dat=%3Cproquest_cross%3E896189664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-5d797aebd272f5aaa15b3968c8dc3b67afd474fb952963ed74d0351c2ade5d433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869147543&rft_id=info:pmid/&rft_ieee_id=1381734&rfr_iscdi=true