Loading…

Performance of Two Low-Rank STAP Filters in a Heterogeneous Noise

This paper considers the Space Time Adaptive Processing (STAP) problem where the disturbance is modeled as the sum of a Low-Rank (LR) Spherically Invariant Random Vector (SIRV) clutter and a zero-mean white Gaussian noise. To derive our adaptive LR-STAP filters, the estimation of the projector onto...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2013-01, Vol.61 (1), p.57-61
Main Authors: Ginolhac, G., Forster, P., Pascal, F., Ovarlez, J-P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers the Space Time Adaptive Processing (STAP) problem where the disturbance is modeled as the sum of a Low-Rank (LR) Spherically Invariant Random Vector (SIRV) clutter and a zero-mean white Gaussian noise. To derive our adaptive LR-STAP filters, the estimation of the projector onto the clutter subspace is performed from the Sample Covariance Matrix (SCM) and the Normalized Sample Covariance Matrix (NSCM). We compute the theoretical performance of both corresponding LR-STAP filters through the analysis of the Signal to Interference plus Noise Ratio (SINR) Loss, based on a perturbation analysis. Numerical simulations validate the theoretical formula and allow to show that the LR-STAP filter built from the SCM performance does not depend on the heterogeneity of the SIRV clutter whereas the LR-STAP filter built from the NSCM performance does.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2012.2226162