Loading…

Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors

Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2015-09, Vol.63 (17), p.4502-4515
Main Authors: Marelli, Damian, Minyue Fu, Ninness, Brett
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3
cites cdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3
container_end_page 4515
container_issue 17
container_start_page 4502
container_title IEEE transactions on signal processing
container_volume 63
creator Marelli, Damian
Minyue Fu
Ninness, Brett
description Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail.
doi_str_mv 10.1109/TSP.2015.2440220
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2015_2440220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7118230</ieee_id><sourcerecordid>10_1109_TSP_2015_2440220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi_5A51Jk7TJ4xxOxc0Jm-hbSZvUxaVNSTKw_96ODZ_u4XLOgfMBcIvRBGMk7jfr90mKMJuklKI0RWdghAXFCaJ5dj5oxEjCeP51Ca5C-EEIUyqyEQjT0DdddNFUcNVF00hrYg9dDeNWw6X8Nc2-SRZmp63ZOqfgq7SNbOHc2Kg9rJ2HD7LXwQy_jZfVzrTf8NPELVzubTSd1fDNtda0Wnq41m1wPlyDi1raoG9Odww-5o-b2XOyWD29zKaLpEozEhPMUakwrwjVqqQ1USgTNc4FYUxhpHhJU6xzJgaH4FJmdS44EyovucIZy0oyBujYW3kXgtd10flhoO8LjIoDtGKAVhygFSdoQ-TuGDFa6397jjFPCSJ_tGJqEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Marelli, Damian ; Minyue Fu ; Ninness, Brett</creator><creatorcontrib>Marelli, Damian ; Minyue Fu ; Ninness, Brett</creatorcontrib><description>Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2440220</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Bayes methods ; Bayesian tracking ; distributed estimation ; Kalman filters ; Mathematical model ; maximum likelihood ; Maximum likelihood estimation ; sensor networks ; Sensors ; Signal processing algorithms ; Wiener systems</subject><ispartof>IEEE transactions on signal processing, 2015-09, Vol.63 (17), p.4502-4515</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</citedby><cites>FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7118230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Marelli, Damian</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><creatorcontrib>Ninness, Brett</creatorcontrib><title>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail.</description><subject>Approximation methods</subject><subject>Bayes methods</subject><subject>Bayesian tracking</subject><subject>distributed estimation</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>sensor networks</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>Wiener systems</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKfvgi_5A51Jk7TJ4xxOxc0Jm-hbSZvUxaVNSTKw_96ODZ_u4XLOgfMBcIvRBGMk7jfr90mKMJuklKI0RWdghAXFCaJ5dj5oxEjCeP51Ca5C-EEIUyqyEQjT0DdddNFUcNVF00hrYg9dDeNWw6X8Nc2-SRZmp63ZOqfgq7SNbOHc2Kg9rJ2HD7LXwQy_jZfVzrTf8NPELVzubTSd1fDNtda0Wnq41m1wPlyDi1raoG9Odww-5o-b2XOyWD29zKaLpEozEhPMUakwrwjVqqQ1USgTNc4FYUxhpHhJU6xzJgaH4FJmdS44EyovucIZy0oyBujYW3kXgtd10flhoO8LjIoDtGKAVhygFSdoQ-TuGDFa6397jjFPCSJ_tGJqEw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Marelli, Damian</creator><creator>Minyue Fu</creator><creator>Ninness, Brett</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</title><author>Marelli, Damian ; Minyue Fu ; Ninness, Brett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation methods</topic><topic>Bayes methods</topic><topic>Bayesian tracking</topic><topic>distributed estimation</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>sensor networks</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>Wiener systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marelli, Damian</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><creatorcontrib>Ninness, Brett</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marelli, Damian</au><au>Minyue Fu</au><au>Ninness, Brett</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>63</volume><issue>17</issue><spage>4502</spage><epage>4515</epage><pages>4502-4515</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2015.2440220</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-09, Vol.63 (17), p.4502-4515
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2015_2440220
source IEEE Electronic Library (IEL) Journals
subjects Approximation methods
Bayes methods
Bayesian tracking
distributed estimation
Kalman filters
Mathematical model
maximum likelihood
Maximum likelihood estimation
sensor networks
Sensors
Signal processing algorithms
Wiener systems
title Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Optimality%20of%20the%20Maximum-Likelihood%20Kalman%20Filter%20for%20Bayesian%20Tracking%20With%20Multiple%20Nonlinear%20Sensors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Marelli,%20Damian&rft.date=2015-09-01&rft.volume=63&rft.issue=17&rft.spage=4502&rft.epage=4515&rft.pages=4502-4515&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2440220&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSP_2015_2440220%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7118230&rfr_iscdi=true