Loading…
Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors
Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed...
Saved in:
Published in: | IEEE transactions on signal processing 2015-09, Vol.63 (17), p.4502-4515 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3 |
container_end_page | 4515 |
container_issue | 17 |
container_start_page | 4502 |
container_title | IEEE transactions on signal processing |
container_volume | 63 |
creator | Marelli, Damian Minyue Fu Ninness, Brett |
description | Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail. |
doi_str_mv | 10.1109/TSP.2015.2440220 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2015_2440220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7118230</ieee_id><sourcerecordid>10_1109_TSP_2015_2440220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi_5A51Jk7TJ4xxOxc0Jm-hbSZvUxaVNSTKw_96ODZ_u4XLOgfMBcIvRBGMk7jfr90mKMJuklKI0RWdghAXFCaJ5dj5oxEjCeP51Ca5C-EEIUyqyEQjT0DdddNFUcNVF00hrYg9dDeNWw6X8Nc2-SRZmp63ZOqfgq7SNbOHc2Kg9rJ2HD7LXwQy_jZfVzrTf8NPELVzubTSd1fDNtda0Wnq41m1wPlyDi1raoG9Odww-5o-b2XOyWD29zKaLpEozEhPMUakwrwjVqqQ1USgTNc4FYUxhpHhJU6xzJgaH4FJmdS44EyovucIZy0oyBujYW3kXgtd10flhoO8LjIoDtGKAVhygFSdoQ-TuGDFa6397jjFPCSJ_tGJqEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Marelli, Damian ; Minyue Fu ; Ninness, Brett</creator><creatorcontrib>Marelli, Damian ; Minyue Fu ; Ninness, Brett</creatorcontrib><description>Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2440220</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Bayes methods ; Bayesian tracking ; distributed estimation ; Kalman filters ; Mathematical model ; maximum likelihood ; Maximum likelihood estimation ; sensor networks ; Sensors ; Signal processing algorithms ; Wiener systems</subject><ispartof>IEEE transactions on signal processing, 2015-09, Vol.63 (17), p.4502-4515</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</citedby><cites>FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7118230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Marelli, Damian</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><creatorcontrib>Ninness, Brett</creatorcontrib><title>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail.</description><subject>Approximation methods</subject><subject>Bayes methods</subject><subject>Bayesian tracking</subject><subject>distributed estimation</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>sensor networks</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>Wiener systems</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKfvgi_5A51Jk7TJ4xxOxc0Jm-hbSZvUxaVNSTKw_96ODZ_u4XLOgfMBcIvRBGMk7jfr90mKMJuklKI0RWdghAXFCaJ5dj5oxEjCeP51Ca5C-EEIUyqyEQjT0DdddNFUcNVF00hrYg9dDeNWw6X8Nc2-SRZmp63ZOqfgq7SNbOHc2Kg9rJ2HD7LXwQy_jZfVzrTf8NPELVzubTSd1fDNtda0Wnq41m1wPlyDi1raoG9Odww-5o-b2XOyWD29zKaLpEozEhPMUakwrwjVqqQ1USgTNc4FYUxhpHhJU6xzJgaH4FJmdS44EyovucIZy0oyBujYW3kXgtd10flhoO8LjIoDtGKAVhygFSdoQ-TuGDFa6397jjFPCSJ_tGJqEw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Marelli, Damian</creator><creator>Minyue Fu</creator><creator>Ninness, Brett</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</title><author>Marelli, Damian ; Minyue Fu ; Ninness, Brett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation methods</topic><topic>Bayes methods</topic><topic>Bayesian tracking</topic><topic>distributed estimation</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>sensor networks</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>Wiener systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marelli, Damian</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><creatorcontrib>Ninness, Brett</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marelli, Damian</au><au>Minyue Fu</au><au>Ninness, Brett</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>63</volume><issue>17</issue><spage>4502</spage><epage>4515</epage><pages>4502-4515</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Bayesian tracking is a general technique for state estimation of nonlinear dynamic systems, but it suffers from the drawback of computational complexity. This paper is concerned with a class of Wiener systems with multiple nonlinear sensors. Such a system consists of a linear dynamic system followed by a set of static nonlinear measurements. We study a maximum-likelihood Kalman filtering (MLKF) technique which involves maximum-likelihood estimation of the nonlinear measurements followed by classical Kalman filtering. This technique permits a distributed implementation of the Bayesian tracker and guarantees the boundedness of the estimation error. The focus of this paper is to study the extent to which the MLKF technique approximates the theoretically optimal Bayesian tracker. We provide conditions to guarantee that this approximation becomes asymptotically exact as the number of sensors becomes large. Two case studies are analyzed in detail.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2015.2440220</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2015-09, Vol.63 (17), p.4502-4515 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2015_2440220 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Approximation methods Bayes methods Bayesian tracking distributed estimation Kalman filters Mathematical model maximum likelihood Maximum likelihood estimation sensor networks Sensors Signal processing algorithms Wiener systems |
title | Asymptotic Optimality of the Maximum-Likelihood Kalman Filter for Bayesian Tracking With Multiple Nonlinear Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Optimality%20of%20the%20Maximum-Likelihood%20Kalman%20Filter%20for%20Bayesian%20Tracking%20With%20Multiple%20Nonlinear%20Sensors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Marelli,%20Damian&rft.date=2015-09-01&rft.volume=63&rft.issue=17&rft.spage=4502&rft.epage=4515&rft.pages=4502-4515&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2440220&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSP_2015_2440220%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-180bd18c34edb4f3d069f179355d10d8b421e7598c398aa6f79859d7b8d1656b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7118230&rfr_iscdi=true |