Loading…

Self-Localization of Ad-Hoc Arrays Using Time Difference of Arrivals

We investigate the problem of sensor and source joint localization using time-difference of arrivals (TDOAs) of an ad-hoc array. A major challenge is that the TDOAs contain unknown time offsets between asynchronous sensors. To address this problem, we propose a low-rank approximation method that doe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2016-02, Vol.64 (4), p.1018-1033
Main Authors: Lin Wang, Tsz-Kin Hon, Reiss, Joshua D., Cavallaro, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the problem of sensor and source joint localization using time-difference of arrivals (TDOAs) of an ad-hoc array. A major challenge is that the TDOAs contain unknown time offsets between asynchronous sensors. To address this problem, we propose a low-rank approximation method that does not need any prior knowledge of sensor and source locations or timing information. At first, we construct a pseudo time of arrival (TOA) matrix by introducing two sets of unknown timing parameters (source onset times and device capture times) into the current TDOA matrix. Then we propose a Gauss-Newton low-rank approximation algorithm to jointly identify the two sets of unknown timing parameters, exploiting the low-rank property embedded in the pseudo TOA matrix. We derive the boundaries of the timing parameters to reduce the initialization space and employ a multi-initialization scheme. Finally, we use the estimated timing parameters to correct the pseudo TOA matrix, which is further applied to sensor and source localization. Experimental results show that the proposed approach outperforms state-of-the-art algorithms.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2015.2498130