Loading…
Self-Localization of Ad-Hoc Arrays Using Time Difference of Arrivals
We investigate the problem of sensor and source joint localization using time-difference of arrivals (TDOAs) of an ad-hoc array. A major challenge is that the TDOAs contain unknown time offsets between asynchronous sensors. To address this problem, we propose a low-rank approximation method that doe...
Saved in:
Published in: | IEEE transactions on signal processing 2016-02, Vol.64 (4), p.1018-1033 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the problem of sensor and source joint localization using time-difference of arrivals (TDOAs) of an ad-hoc array. A major challenge is that the TDOAs contain unknown time offsets between asynchronous sensors. To address this problem, we propose a low-rank approximation method that does not need any prior knowledge of sensor and source locations or timing information. At first, we construct a pseudo time of arrival (TOA) matrix by introducing two sets of unknown timing parameters (source onset times and device capture times) into the current TDOA matrix. Then we propose a Gauss-Newton low-rank approximation algorithm to jointly identify the two sets of unknown timing parameters, exploiting the low-rank property embedded in the pseudo TOA matrix. We derive the boundaries of the timing parameters to reduce the initialization space and employ a multi-initialization scheme. Finally, we use the estimated timing parameters to correct the pseudo TOA matrix, which is further applied to sensor and source localization. Experimental results show that the proposed approach outperforms state-of-the-art algorithms. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2015.2498130 |