Loading…
Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking
Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data associa...
Saved in:
Published in: | IEEE transactions on signal processing 2019-11, Vol.67 (22), p.5896-5911 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23 |
container_end_page | 5911 |
container_issue | 22 |
container_start_page | 5896 |
container_title | IEEE transactions on signal processing |
container_volume | 67 |
creator | Sharma, Pranay Saucan, Augustin-Alexandru Bucci, Donald J. Varshney, Pramod K. |
description | Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking. |
doi_str_mv | 10.1109/TSP.2019.2946017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2946017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8864098</ieee_id><sourcerecordid>2313672763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bbI5SrVVqCh0BfES0t1JSV03NdkV9Ne7pcXTvAzPOwMPQpeUTCgl-qZcvkwYoXrCtJCEqiM0olrQjAglj4dMcp7lhXo7RWcpbQihQmg5Qu93UEHbRdv4X6jx3PYpedvimW86iAm7EPE0hC1E2_lvwEtoXLYI1Y4fNqHFtq3xU990PittXEOHy2irD9-uz9GJs02Ci8Mco9fZfTl9yBbP88fp7SKrmKZdVhBZ81roFeegwQlumWMrW8gaeO4qrQWofKVqq3Weq5zy2jFOAORKMqKGPEbX-7vbGL56SJ3ZhD62w0vDOOVSMSX5QJE9VcWQUgRnttF_2vhjKDE7g2YwaHYGzcHgULnaVzwA_ONFIQXRBf8D6lFtMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313672763</pqid></control><display><type>article</type><title>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</title><source>IEEE Xplore (Online service)</source><creator>Sharma, Pranay ; Saucan, Augustin-Alexandru ; Bucci, Donald J. ; Varshney, Pramod K.</creator><creatorcontrib>Sharma, Pranay ; Saucan, Augustin-Alexandru ; Bucci, Donald J. ; Varshney, Pramod K.</creatorcontrib><description>Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2946017</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Belief Propagation ; Clutter ; Current measurement ; Gaussian distribution ; Gibbs Sampling ; Localization ; Measurement uncertainty ; Multi-target tracking ; Multiple target tracking ; Self-localization ; Sensors ; Target tracking ; Time measurement ; Uncertainty</subject><ispartof>IEEE transactions on signal processing, 2019-11, Vol.67 (22), p.5896-5911</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</citedby><cites>FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</cites><orcidid>0000-0002-7500-5768 ; 0000-0003-4504-5088 ; 0000-0001-6366-4988 ; 0000-0002-4431-4525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8864098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Sharma, Pranay</creatorcontrib><creatorcontrib>Saucan, Augustin-Alexandru</creatorcontrib><creatorcontrib>Bucci, Donald J.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><title>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.</description><subject>Algorithms</subject><subject>Belief Propagation</subject><subject>Clutter</subject><subject>Current measurement</subject><subject>Gaussian distribution</subject><subject>Gibbs Sampling</subject><subject>Localization</subject><subject>Measurement uncertainty</subject><subject>Multi-target tracking</subject><subject>Multiple target tracking</subject><subject>Self-localization</subject><subject>Sensors</subject><subject>Target tracking</subject><subject>Time measurement</subject><subject>Uncertainty</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bbI5SrVVqCh0BfES0t1JSV03NdkV9Ne7pcXTvAzPOwMPQpeUTCgl-qZcvkwYoXrCtJCEqiM0olrQjAglj4dMcp7lhXo7RWcpbQihQmg5Qu93UEHbRdv4X6jx3PYpedvimW86iAm7EPE0hC1E2_lvwEtoXLYI1Y4fNqHFtq3xU990PittXEOHy2irD9-uz9GJs02Ci8Mco9fZfTl9yBbP88fp7SKrmKZdVhBZ81roFeegwQlumWMrW8gaeO4qrQWofKVqq3Weq5zy2jFOAORKMqKGPEbX-7vbGL56SJ3ZhD62w0vDOOVSMSX5QJE9VcWQUgRnttF_2vhjKDE7g2YwaHYGzcHgULnaVzwA_ONFIQXRBf8D6lFtMw</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Sharma, Pranay</creator><creator>Saucan, Augustin-Alexandru</creator><creator>Bucci, Donald J.</creator><creator>Varshney, Pramod K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7500-5768</orcidid><orcidid>https://orcid.org/0000-0003-4504-5088</orcidid><orcidid>https://orcid.org/0000-0001-6366-4988</orcidid><orcidid>https://orcid.org/0000-0002-4431-4525</orcidid></search><sort><creationdate>20191115</creationdate><title>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</title><author>Sharma, Pranay ; Saucan, Augustin-Alexandru ; Bucci, Donald J. ; Varshney, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Belief Propagation</topic><topic>Clutter</topic><topic>Current measurement</topic><topic>Gaussian distribution</topic><topic>Gibbs Sampling</topic><topic>Localization</topic><topic>Measurement uncertainty</topic><topic>Multi-target tracking</topic><topic>Multiple target tracking</topic><topic>Self-localization</topic><topic>Sensors</topic><topic>Target tracking</topic><topic>Time measurement</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Pranay</creatorcontrib><creatorcontrib>Saucan, Augustin-Alexandru</creatorcontrib><creatorcontrib>Bucci, Donald J.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Pranay</au><au>Saucan, Augustin-Alexandru</au><au>Bucci, Donald J.</au><au>Varshney, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-11-15</date><risdate>2019</risdate><volume>67</volume><issue>22</issue><spage>5896</spage><epage>5911</epage><pages>5896-5911</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2946017</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7500-5768</orcidid><orcidid>https://orcid.org/0000-0003-4504-5088</orcidid><orcidid>https://orcid.org/0000-0001-6366-4988</orcidid><orcidid>https://orcid.org/0000-0002-4431-4525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2019-11, Vol.67 (22), p.5896-5911 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2019_2946017 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Belief Propagation Clutter Current measurement Gaussian distribution Gibbs Sampling Localization Measurement uncertainty Multi-target tracking Multiple target tracking Self-localization Sensors Target tracking Time measurement Uncertainty |
title | Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Gaussian%20Filters%20for%20Cooperative%20Self-Localization%20and%20Multi-Target%20Tracking&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Sharma,%20Pranay&rft.date=2019-11-15&rft.volume=67&rft.issue=22&rft.spage=5896&rft.epage=5911&rft.pages=5896-5911&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2946017&rft_dat=%3Cproquest_cross%3E2313672763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313672763&rft_id=info:pmid/&rft_ieee_id=8864098&rfr_iscdi=true |