Loading…

Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking

Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data associa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2019-11, Vol.67 (22), p.5896-5911
Main Authors: Sharma, Pranay, Saucan, Augustin-Alexandru, Bucci, Donald J., Varshney, Pramod K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23
cites cdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23
container_end_page 5911
container_issue 22
container_start_page 5896
container_title IEEE transactions on signal processing
container_volume 67
creator Sharma, Pranay
Saucan, Augustin-Alexandru
Bucci, Donald J.
Varshney, Pramod K.
description Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.
doi_str_mv 10.1109/TSP.2019.2946017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2946017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8864098</ieee_id><sourcerecordid>2313672763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bbI5SrVVqCh0BfES0t1JSV03NdkV9Ne7pcXTvAzPOwMPQpeUTCgl-qZcvkwYoXrCtJCEqiM0olrQjAglj4dMcp7lhXo7RWcpbQihQmg5Qu93UEHbRdv4X6jx3PYpedvimW86iAm7EPE0hC1E2_lvwEtoXLYI1Y4fNqHFtq3xU990PittXEOHy2irD9-uz9GJs02Ci8Mco9fZfTl9yBbP88fp7SKrmKZdVhBZ81roFeegwQlumWMrW8gaeO4qrQWofKVqq3Weq5zy2jFOAORKMqKGPEbX-7vbGL56SJ3ZhD62w0vDOOVSMSX5QJE9VcWQUgRnttF_2vhjKDE7g2YwaHYGzcHgULnaVzwA_ONFIQXRBf8D6lFtMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313672763</pqid></control><display><type>article</type><title>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</title><source>IEEE Xplore (Online service)</source><creator>Sharma, Pranay ; Saucan, Augustin-Alexandru ; Bucci, Donald J. ; Varshney, Pramod K.</creator><creatorcontrib>Sharma, Pranay ; Saucan, Augustin-Alexandru ; Bucci, Donald J. ; Varshney, Pramod K.</creatorcontrib><description>Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2946017</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Belief Propagation ; Clutter ; Current measurement ; Gaussian distribution ; Gibbs Sampling ; Localization ; Measurement uncertainty ; Multi-target tracking ; Multiple target tracking ; Self-localization ; Sensors ; Target tracking ; Time measurement ; Uncertainty</subject><ispartof>IEEE transactions on signal processing, 2019-11, Vol.67 (22), p.5896-5911</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</citedby><cites>FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</cites><orcidid>0000-0002-7500-5768 ; 0000-0003-4504-5088 ; 0000-0001-6366-4988 ; 0000-0002-4431-4525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8864098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Sharma, Pranay</creatorcontrib><creatorcontrib>Saucan, Augustin-Alexandru</creatorcontrib><creatorcontrib>Bucci, Donald J.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><title>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.</description><subject>Algorithms</subject><subject>Belief Propagation</subject><subject>Clutter</subject><subject>Current measurement</subject><subject>Gaussian distribution</subject><subject>Gibbs Sampling</subject><subject>Localization</subject><subject>Measurement uncertainty</subject><subject>Multi-target tracking</subject><subject>Multiple target tracking</subject><subject>Self-localization</subject><subject>Sensors</subject><subject>Target tracking</subject><subject>Time measurement</subject><subject>Uncertainty</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bbI5SrVVqCh0BfES0t1JSV03NdkV9Ne7pcXTvAzPOwMPQpeUTCgl-qZcvkwYoXrCtJCEqiM0olrQjAglj4dMcp7lhXo7RWcpbQihQmg5Qu93UEHbRdv4X6jx3PYpedvimW86iAm7EPE0hC1E2_lvwEtoXLYI1Y4fNqHFtq3xU990PittXEOHy2irD9-uz9GJs02Ci8Mco9fZfTl9yBbP88fp7SKrmKZdVhBZ81roFeegwQlumWMrW8gaeO4qrQWofKVqq3Weq5zy2jFOAORKMqKGPEbX-7vbGL56SJ3ZhD62w0vDOOVSMSX5QJE9VcWQUgRnttF_2vhjKDE7g2YwaHYGzcHgULnaVzwA_ONFIQXRBf8D6lFtMw</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Sharma, Pranay</creator><creator>Saucan, Augustin-Alexandru</creator><creator>Bucci, Donald J.</creator><creator>Varshney, Pramod K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7500-5768</orcidid><orcidid>https://orcid.org/0000-0003-4504-5088</orcidid><orcidid>https://orcid.org/0000-0001-6366-4988</orcidid><orcidid>https://orcid.org/0000-0002-4431-4525</orcidid></search><sort><creationdate>20191115</creationdate><title>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</title><author>Sharma, Pranay ; Saucan, Augustin-Alexandru ; Bucci, Donald J. ; Varshney, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Belief Propagation</topic><topic>Clutter</topic><topic>Current measurement</topic><topic>Gaussian distribution</topic><topic>Gibbs Sampling</topic><topic>Localization</topic><topic>Measurement uncertainty</topic><topic>Multi-target tracking</topic><topic>Multiple target tracking</topic><topic>Self-localization</topic><topic>Sensors</topic><topic>Target tracking</topic><topic>Time measurement</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Pranay</creatorcontrib><creatorcontrib>Saucan, Augustin-Alexandru</creatorcontrib><creatorcontrib>Bucci, Donald J.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Pranay</au><au>Saucan, Augustin-Alexandru</au><au>Bucci, Donald J.</au><au>Varshney, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-11-15</date><risdate>2019</risdate><volume>67</volume><issue>22</issue><spage>5896</spage><epage>5911</epage><pages>5896-5911</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2946017</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7500-5768</orcidid><orcidid>https://orcid.org/0000-0003-4504-5088</orcidid><orcidid>https://orcid.org/0000-0001-6366-4988</orcidid><orcidid>https://orcid.org/0000-0002-4431-4525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2019-11, Vol.67 (22), p.5896-5911
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2019_2946017
source IEEE Xplore (Online service)
subjects Algorithms
Belief Propagation
Clutter
Current measurement
Gaussian distribution
Gibbs Sampling
Localization
Measurement uncertainty
Multi-target tracking
Multiple target tracking
Self-localization
Sensors
Target tracking
Time measurement
Uncertainty
title Decentralized Gaussian Filters for Cooperative Self-Localization and Multi-Target Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Gaussian%20Filters%20for%20Cooperative%20Self-Localization%20and%20Multi-Target%20Tracking&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Sharma,%20Pranay&rft.date=2019-11-15&rft.volume=67&rft.issue=22&rft.spage=5896&rft.epage=5911&rft.pages=5896-5911&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2946017&rft_dat=%3Cproquest_cross%3E2313672763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-806d3d49b33e9ef43a2f2ba86de35fc994e75b7da99557513df230ee6b6207f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313672763&rft_id=info:pmid/&rft_ieee_id=8864098&rfr_iscdi=true