Loading…
Distributed Multi-Object Tracking Under Limited Field of View Sensors
We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm . To accomplish t...
Saved in:
Published in: | IEEE transactions on signal processing 2021, Vol.69, p.5329-5344 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm . To accomplish this, we first formalise the concept of label consistency, determine a sufficient condition to achieve it and develop a novel label consensus approach that reduces label inconsistency caused by objects' movements from one node's limited FoV to another. Second, we develop a distributed multi-object fusion algorithm that fuses local multi-object state estimates instead of local multi-object densities. This algorithm: i) requires significantly less processing time than multi-object density fusion methods; ii) achieves better tracking accuracy by considering Optimal Sub-Pattern Assignment (OSPA) tracking errors over several scans rather than a single scan; iii) is agnostic to local multi-object tracking techniques, and only requires each node to provide a set of estimated tracks. Thus, it is not necessary to assume that the nodes maintain multi-object densities, and hence the fusion outcomes do not modify local multi-object densities. Numerical experiments demonstrate our proposed solution's real-time computational efficiency and accuracy compared to state-of-the-art solutions in challenging scenarios. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2021.3103125 |