Loading…
A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images
This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linea...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2009-02, Vol.56 (2), p.404-409 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3381-ad3ff992e48516861e46f04a73e665b3ed5f7add68e4bc95b178a0a167792f243 |
---|---|
cites | cdi_FETCH-LOGICAL-c3381-ad3ff992e48516861e46f04a73e665b3ed5f7add68e4bc95b178a0a167792f243 |
container_end_page | 409 |
container_issue | 2 |
container_start_page | 404 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 56 |
creator | Hang Gao Hon Fai Choi Claus, P. Boonen, S. Jaecques, S. van Lenthe, G.H. Van Der Perre, G. Lauriks, W. D'hooge, J. |
description | This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method). |
doi_str_mv | 10.1109/TUFFC.2009.1051 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TUFFC_2009_1051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787194</ieee_id><sourcerecordid>875026601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3381-ad3ff992e48516861e46f04a73e665b3ed5f7add68e4bc95b178a0a167792f243</originalsourceid><addsrcrecordid>eNqFkT1v1EAQhlcIRC6BmoJmRUEq383s95bRHZcgRaIgqVd73nFw5PMGrx0p_z6-HKKgCNU0z_tqZh7GPiEsEcGvbm632_VSAPglgsY3bIFa6Mp5rd-yBTinKwkIJ-y0lHsAVMqL9-wEvdAz6Bfs5wVvYhl5nfvH3E1jm_tqFwslvqfxV065y3dPfMy8tPupiyNxUW3SSlYbXschtbHmUzcOseSpT7zdxzsqH9i7JnaFPv6ZZ-x2--1mfVVd_7j8vr64rmopHVYxyabxXpByGo0zSMo0oKKVZIzeSUq6sTEl40jtaq93aF2EiMZaLxqh5Bk7P_Y-DPn3RGUM-7bU1HWxpzyV4KwGYQzgTH59lZRKe-GU-C8owFoQQs7gl3_A-zwN_XxucNpZVNIeFlwdoXrIpQzUhIdhftHwFBDCwV948RcO_sLB35z4fEy0RPSXVnZu9Eo-A0WskoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858714374</pqid></control><display><type>article</type><title>A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hang Gao ; Hon Fai Choi ; Claus, P. ; Boonen, S. ; Jaecques, S. ; van Lenthe, G.H. ; Van Der Perre, G. ; Lauriks, W. ; D'hooge, J.</creator><creatorcontrib>Hang Gao ; Hon Fai Choi ; Claus, P. ; Boonen, S. ; Jaecques, S. ; van Lenthe, G.H. ; Van Der Perre, G. ; Lauriks, W. ; D'hooge, J.</creatorcontrib><description>This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2009.1051</identifier><identifier>PMID: 19251529</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cardiology ; Computational modeling ; Convolution ; Distribution functions ; Nonhomogeneous media ; Phased arrays ; Scattering ; Studies ; Ultrasonic imaging ; Ultrasonic transducer arrays ; Ultrasonic transducers</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2009-02, Vol.56 (2), p.404-409</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3381-ad3ff992e48516861e46f04a73e665b3ed5f7add68e4bc95b178a0a167792f243</citedby><cites>FETCH-LOGICAL-c3381-ad3ff992e48516861e46f04a73e665b3ed5f7add68e4bc95b178a0a167792f243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hang Gao</creatorcontrib><creatorcontrib>Hon Fai Choi</creatorcontrib><creatorcontrib>Claus, P.</creatorcontrib><creatorcontrib>Boonen, S.</creatorcontrib><creatorcontrib>Jaecques, S.</creatorcontrib><creatorcontrib>van Lenthe, G.H.</creatorcontrib><creatorcontrib>Van Der Perre, G.</creatorcontrib><creatorcontrib>Lauriks, W.</creatorcontrib><creatorcontrib>D'hooge, J.</creatorcontrib><title>A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description>This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).</description><subject>Cardiology</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>Distribution functions</subject><subject>Nonhomogeneous media</subject><subject>Phased arrays</subject><subject>Scattering</subject><subject>Studies</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic transducer arrays</subject><subject>Ultrasonic transducers</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkT1v1EAQhlcIRC6BmoJmRUEq383s95bRHZcgRaIgqVd73nFw5PMGrx0p_z6-HKKgCNU0z_tqZh7GPiEsEcGvbm632_VSAPglgsY3bIFa6Mp5rd-yBTinKwkIJ-y0lHsAVMqL9-wEvdAz6Bfs5wVvYhl5nfvH3E1jm_tqFwslvqfxV065y3dPfMy8tPupiyNxUW3SSlYbXschtbHmUzcOseSpT7zdxzsqH9i7JnaFPv6ZZ-x2--1mfVVd_7j8vr64rmopHVYxyabxXpByGo0zSMo0oKKVZIzeSUq6sTEl40jtaq93aF2EiMZaLxqh5Bk7P_Y-DPn3RGUM-7bU1HWxpzyV4KwGYQzgTH59lZRKe-GU-C8owFoQQs7gl3_A-zwN_XxucNpZVNIeFlwdoXrIpQzUhIdhftHwFBDCwV948RcO_sLB35z4fEy0RPSXVnZu9Eo-A0WskoM</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Hang Gao</creator><creator>Hon Fai Choi</creator><creator>Claus, P.</creator><creator>Boonen, S.</creator><creator>Jaecques, S.</creator><creator>van Lenthe, G.H.</creator><creator>Van Der Perre, G.</creator><creator>Lauriks, W.</creator><creator>D'hooge, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>200902</creationdate><title>A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images</title><author>Hang Gao ; Hon Fai Choi ; Claus, P. ; Boonen, S. ; Jaecques, S. ; van Lenthe, G.H. ; Van Der Perre, G. ; Lauriks, W. ; D'hooge, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3381-ad3ff992e48516861e46f04a73e665b3ed5f7add68e4bc95b178a0a167792f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cardiology</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>Distribution functions</topic><topic>Nonhomogeneous media</topic><topic>Phased arrays</topic><topic>Scattering</topic><topic>Studies</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic transducer arrays</topic><topic>Ultrasonic transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hang Gao</creatorcontrib><creatorcontrib>Hon Fai Choi</creatorcontrib><creatorcontrib>Claus, P.</creatorcontrib><creatorcontrib>Boonen, S.</creatorcontrib><creatorcontrib>Jaecques, S.</creatorcontrib><creatorcontrib>van Lenthe, G.H.</creatorcontrib><creatorcontrib>Van Der Perre, G.</creatorcontrib><creatorcontrib>Lauriks, W.</creatorcontrib><creatorcontrib>D'hooge, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hang Gao</au><au>Hon Fai Choi</au><au>Claus, P.</au><au>Boonen, S.</au><au>Jaecques, S.</au><au>van Lenthe, G.H.</au><au>Van Der Perre, G.</au><au>Lauriks, W.</au><au>D'hooge, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>2009-02</date><risdate>2009</risdate><volume>56</volume><issue>2</issue><spage>404</spage><epage>409</epage><pages>404-409</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).</abstract><cop>New York</cop><pub>IEEE</pub><pmid>19251529</pmid><doi>10.1109/TUFFC.2009.1051</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2009-02, Vol.56 (2), p.404-409 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TUFFC_2009_1051 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cardiology Computational modeling Convolution Distribution functions Nonhomogeneous media Phased arrays Scattering Studies Ultrasonic imaging Ultrasonic transducer arrays Ultrasonic transducers |
title | A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20convolution-based%20methodology%20to%20simulate%202-Dd/3-D%20cardiac%20ultrasound%20images&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Hang%20Gao&rft.date=2009-02&rft.volume=56&rft.issue=2&rft.spage=404&rft.epage=409&rft.pages=404-409&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2009.1051&rft_dat=%3Cproquest_cross%3E875026601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3381-ad3ff992e48516861e46f04a73e665b3ed5f7add68e4bc95b178a0a167792f243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858714374&rft_id=info:pmid/19251529&rft_ieee_id=4787194&rfr_iscdi=true |