Loading…

TimeSeer: Scagnostics for High-Dimensional Time Series

We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a se...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2013-03, Vol.19 (3), p.470-483
Main Authors: Tuan Nhon Dang, Anand, A., Wilkinson, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-5893ddfe1e19bbd1d7925849effc3dd01221ba35e9f85fc29494d8807d171b513
cites cdi_FETCH-LOGICAL-c352t-5893ddfe1e19bbd1d7925849effc3dd01221ba35e9f85fc29494d8807d171b513
container_end_page 483
container_issue 3
container_start_page 470
container_title IEEE transactions on visualization and computer graphics
container_volume 19
creator Tuan Nhon Dang
Anand, A.
Wilkinson, L.
description We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional euclidean space. These characterizations include measures, such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can locate anomalous or interesting subseries for further analysis. Our application is designed to handle the types of doubly multivariate data series that are often found in security, financial, social, and other sectors.
doi_str_mv 10.1109/TVCG.2012.128
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2012_128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6200267</ieee_id><sourcerecordid>1273437187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5893ddfe1e19bbd1d7925849effc3dd01221ba35e9f85fc29494d8807d171b513</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqUwMiGhjCwpPjvxBxsqH0WqxNDCGiXxuRjlo9jtwL_HUUunO-l97tXpIeQa6BSA6vvV5-x1yiiwKTB1QsagM0hpTsVp3KmUKRNMjMhFCN-UQpYpfU5GjHMqBcCYiJVrcYnoH5JlXa67PmxdHRLb-2Tu1l_pU4y74PqubJIBTZboHYZLcmbLJuDVYU7Ix8vzajZPF--vb7PHRVrznG3TXGlujEVA0FVlwEjNcpVptLaOQfyaQVXyHLVVua2ZznRmlKLSgIQqBz4hd_veje9_dhi2RetCjU1TdtjvQgFM8oxLUDKi6R6tfR-CR1tsvGtL_1sALQZVxaCqGFTFMxX520P1rmrRHOl_NxG42QMOEY-xYJQyIfkfl8ZrJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273437187</pqid></control><display><type>article</type><title>TimeSeer: Scagnostics for High-Dimensional Time Series</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tuan Nhon Dang ; Anand, A. ; Wilkinson, L.</creator><creatorcontrib>Tuan Nhon Dang ; Anand, A. ; Wilkinson, L.</creatorcontrib><description>We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional euclidean space. These characterizations include measures, such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can locate anomalous or interesting subseries for further analysis. Our application is designed to handle the types of doubly multivariate data series that are often found in security, financial, social, and other sectors.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.128</identifier><identifier>PMID: 23307611</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computer Graphics ; Computer Simulation ; Density measurement ; Employment ; high-dimensional visual analytics ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Length measurement ; Lenses ; Models, Statistical ; multiple time series ; Multivariate Analysis ; Reproducibility of Results ; Scagnostics ; scatterplot matrix ; Sensitivity and Specificity ; Shape ; Software ; Time series analysis ; User-Computer Interface ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-03, Vol.19 (3), p.470-483</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5893ddfe1e19bbd1d7925849effc3dd01221ba35e9f85fc29494d8807d171b513</citedby><cites>FETCH-LOGICAL-c352t-5893ddfe1e19bbd1d7925849effc3dd01221ba35e9f85fc29494d8807d171b513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6200267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23307611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuan Nhon Dang</creatorcontrib><creatorcontrib>Anand, A.</creatorcontrib><creatorcontrib>Wilkinson, L.</creatorcontrib><title>TimeSeer: Scagnostics for High-Dimensional Time Series</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional euclidean space. These characterizations include measures, such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can locate anomalous or interesting subseries for further analysis. Our application is designed to handle the types of doubly multivariate data series that are often found in security, financial, social, and other sectors.</description><subject>Algorithms</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Density measurement</subject><subject>Employment</subject><subject>high-dimensional visual analytics</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Length measurement</subject><subject>Lenses</subject><subject>Models, Statistical</subject><subject>multiple time series</subject><subject>Multivariate Analysis</subject><subject>Reproducibility of Results</subject><subject>Scagnostics</subject><subject>scatterplot matrix</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Software</subject><subject>Time series analysis</subject><subject>User-Computer Interface</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EoqUwMiGhjCwpPjvxBxsqH0WqxNDCGiXxuRjlo9jtwL_HUUunO-l97tXpIeQa6BSA6vvV5-x1yiiwKTB1QsagM0hpTsVp3KmUKRNMjMhFCN-UQpYpfU5GjHMqBcCYiJVrcYnoH5JlXa67PmxdHRLb-2Tu1l_pU4y74PqubJIBTZboHYZLcmbLJuDVYU7Ix8vzajZPF--vb7PHRVrznG3TXGlujEVA0FVlwEjNcpVptLaOQfyaQVXyHLVVua2ZznRmlKLSgIQqBz4hd_veje9_dhi2RetCjU1TdtjvQgFM8oxLUDKi6R6tfR-CR1tsvGtL_1sALQZVxaCqGFTFMxX520P1rmrRHOl_NxG42QMOEY-xYJQyIfkfl8ZrJw</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Tuan Nhon Dang</creator><creator>Anand, A.</creator><creator>Wilkinson, L.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130301</creationdate><title>TimeSeer: Scagnostics for High-Dimensional Time Series</title><author>Tuan Nhon Dang ; Anand, A. ; Wilkinson, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5893ddfe1e19bbd1d7925849effc3dd01221ba35e9f85fc29494d8807d171b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Density measurement</topic><topic>Employment</topic><topic>high-dimensional visual analytics</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Length measurement</topic><topic>Lenses</topic><topic>Models, Statistical</topic><topic>multiple time series</topic><topic>Multivariate Analysis</topic><topic>Reproducibility of Results</topic><topic>Scagnostics</topic><topic>scatterplot matrix</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Software</topic><topic>Time series analysis</topic><topic>User-Computer Interface</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuan Nhon Dang</creatorcontrib><creatorcontrib>Anand, A.</creatorcontrib><creatorcontrib>Wilkinson, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuan Nhon Dang</au><au>Anand, A.</au><au>Wilkinson, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TimeSeer: Scagnostics for High-Dimensional Time Series</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>19</volume><issue>3</issue><spage>470</spage><epage>483</epage><pages>470-483</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional euclidean space. These characterizations include measures, such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can locate anomalous or interesting subseries for further analysis. Our application is designed to handle the types of doubly multivariate data series that are often found in security, financial, social, and other sectors.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23307611</pmid><doi>10.1109/TVCG.2012.128</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2013-03, Vol.19 (3), p.470-483
issn 1077-2626
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2012_128
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Computer Graphics
Computer Simulation
Density measurement
Employment
high-dimensional visual analytics
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Length measurement
Lenses
Models, Statistical
multiple time series
Multivariate Analysis
Reproducibility of Results
Scagnostics
scatterplot matrix
Sensitivity and Specificity
Shape
Software
Time series analysis
User-Computer Interface
Visualization
title TimeSeer: Scagnostics for High-Dimensional Time Series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TimeSeer:%20Scagnostics%20for%20High-Dimensional%20Time%20Series&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Tuan%20Nhon%20Dang&rft.date=2013-03-01&rft.volume=19&rft.issue=3&rft.spage=470&rft.epage=483&rft.pages=470-483&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.128&rft_dat=%3Cproquest_cross%3E1273437187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-5893ddfe1e19bbd1d7925849effc3dd01221ba35e9f85fc29494d8807d171b513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273437187&rft_id=info:pmid/23307611&rft_ieee_id=6200267&rfr_iscdi=true