Loading…
What Makes a Visualization Memorable?
An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What make...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2013-12, Vol.19 (12), p.2306-2315 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293 |
container_end_page | 2315 |
container_issue | 12 |
container_start_page | 2306 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 19 |
creator | Borkin, Michelle A. Vo, Azalea A. Bylinskii, Zoya Isola, Phillip Sunkavalli, Shashank Oliva, Aude Pfister, Hanspeter |
description | An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations. |
doi_str_mv | 10.1109/TVCG.2013.234 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2013_234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6634103</ieee_id><sourcerecordid>3102743751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</originalsourceid><addsrcrecordid>eNqN0M9LwzAUB_AgipvToydBCiJ46Xz52eYkMnQKG17mPIbXNsXOdp1Ne9C_3pTNHTx5SiAfvnnvS8g5hTGloG8Xy8l0zIDyMePigAypFjQECerQ3yGKQqaYGpAT51YAVIhYH5MBEyBppKMhuX57xzaY44d1AQbLwnVYFt_YFvU6mNuqbjAp7d0pOcqxdPZsd47I6-PDYvIUzl6mz5P7WZgKGrdhHsk0xkRxzfwUMc1BsYxxxhTmyEVGKSbIdSat0BhZtBwUCpQs1-iZ5iNys83dNPVnZ11rqsKltixxbevOGSqUkJJqLv9BuYiEnwQ8vfpDV3XXrP0iXgn_LYDuA8OtSpvaucbmZtMUFTZfhoLpqzZ91aav2viqvb_cpXZJZbO9_u3Wg4stKKy1-2eluKDA-Q-ayX4N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442930095</pqid></control><display><type>article</type><title>What Makes a Visualization Memorable?</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Borkin, Michelle A. ; Vo, Azalea A. ; Bylinskii, Zoya ; Isola, Phillip ; Sunkavalli, Shashank ; Oliva, Aude ; Pfister, Hanspeter</creator><creatorcontrib>Borkin, Michelle A. ; Vo, Azalea A. ; Bylinskii, Zoya ; Isola, Phillip ; Sunkavalli, Shashank ; Oliva, Aude ; Pfister, Hanspeter</creatorcontrib><description>An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2013.234</identifier><identifier>PMID: 24051797</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial Intelligence ; Color ; Communities ; Cues ; Data visualization ; Density ; Encoding ; Governments ; Graphs ; Human ; Humans ; Image Interpretation, Computer-Assisted - methods ; Information technology ; information visualization ; memorability ; Memory - physiology ; Pattern Recognition, Visual - physiology ; Task Performance and Analysis ; Taxonomy ; User-Computer Interface ; Visual ; Visualization ; Visualization taxonomy</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-12, Vol.19 (12), p.2306-2315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</citedby><cites>FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6634103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24051797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borkin, Michelle A.</creatorcontrib><creatorcontrib>Vo, Azalea A.</creatorcontrib><creatorcontrib>Bylinskii, Zoya</creatorcontrib><creatorcontrib>Isola, Phillip</creatorcontrib><creatorcontrib>Sunkavalli, Shashank</creatorcontrib><creatorcontrib>Oliva, Aude</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><title>What Makes a Visualization Memorable?</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.</description><subject>Artificial Intelligence</subject><subject>Color</subject><subject>Communities</subject><subject>Cues</subject><subject>Data visualization</subject><subject>Density</subject><subject>Encoding</subject><subject>Governments</subject><subject>Graphs</subject><subject>Human</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information technology</subject><subject>information visualization</subject><subject>memorability</subject><subject>Memory - physiology</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Task Performance and Analysis</subject><subject>Taxonomy</subject><subject>User-Computer Interface</subject><subject>Visual</subject><subject>Visualization</subject><subject>Visualization taxonomy</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0M9LwzAUB_AgipvToydBCiJ46Xz52eYkMnQKG17mPIbXNsXOdp1Ne9C_3pTNHTx5SiAfvnnvS8g5hTGloG8Xy8l0zIDyMePigAypFjQECerQ3yGKQqaYGpAT51YAVIhYH5MBEyBppKMhuX57xzaY44d1AQbLwnVYFt_YFvU6mNuqbjAp7d0pOcqxdPZsd47I6-PDYvIUzl6mz5P7WZgKGrdhHsk0xkRxzfwUMc1BsYxxxhTmyEVGKSbIdSat0BhZtBwUCpQs1-iZ5iNys83dNPVnZ11rqsKltixxbevOGSqUkJJqLv9BuYiEnwQ8vfpDV3XXrP0iXgn_LYDuA8OtSpvaucbmZtMUFTZfhoLpqzZ91aav2viqvb_cpXZJZbO9_u3Wg4stKKy1-2eluKDA-Q-ayX4N</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Borkin, Michelle A.</creator><creator>Vo, Azalea A.</creator><creator>Bylinskii, Zoya</creator><creator>Isola, Phillip</creator><creator>Sunkavalli, Shashank</creator><creator>Oliva, Aude</creator><creator>Pfister, Hanspeter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131201</creationdate><title>What Makes a Visualization Memorable?</title><author>Borkin, Michelle A. ; Vo, Azalea A. ; Bylinskii, Zoya ; Isola, Phillip ; Sunkavalli, Shashank ; Oliva, Aude ; Pfister, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Color</topic><topic>Communities</topic><topic>Cues</topic><topic>Data visualization</topic><topic>Density</topic><topic>Encoding</topic><topic>Governments</topic><topic>Graphs</topic><topic>Human</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information technology</topic><topic>information visualization</topic><topic>memorability</topic><topic>Memory - physiology</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Task Performance and Analysis</topic><topic>Taxonomy</topic><topic>User-Computer Interface</topic><topic>Visual</topic><topic>Visualization</topic><topic>Visualization taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borkin, Michelle A.</creatorcontrib><creatorcontrib>Vo, Azalea A.</creatorcontrib><creatorcontrib>Bylinskii, Zoya</creatorcontrib><creatorcontrib>Isola, Phillip</creatorcontrib><creatorcontrib>Sunkavalli, Shashank</creatorcontrib><creatorcontrib>Oliva, Aude</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borkin, Michelle A.</au><au>Vo, Azalea A.</au><au>Bylinskii, Zoya</au><au>Isola, Phillip</au><au>Sunkavalli, Shashank</au><au>Oliva, Aude</au><au>Pfister, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Makes a Visualization Memorable?</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>19</volume><issue>12</issue><spage>2306</spage><epage>2315</epage><pages>2306-2315</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24051797</pmid><doi>10.1109/TVCG.2013.234</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2013-12, Vol.19 (12), p.2306-2315 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2013_234 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial Intelligence Color Communities Cues Data visualization Density Encoding Governments Graphs Human Humans Image Interpretation, Computer-Assisted - methods Information technology information visualization memorability Memory - physiology Pattern Recognition, Visual - physiology Task Performance and Analysis Taxonomy User-Computer Interface Visual Visualization Visualization taxonomy |
title | What Makes a Visualization Memorable? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Makes%20a%20Visualization%20Memorable?&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Borkin,%20Michelle%20A.&rft.date=2013-12-01&rft.volume=19&rft.issue=12&rft.spage=2306&rft.epage=2315&rft.pages=2306-2315&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2013.234&rft_dat=%3Cproquest_cross%3E3102743751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1442930095&rft_id=info:pmid/24051797&rft_ieee_id=6634103&rfr_iscdi=true |