Loading…

What Makes a Visualization Memorable?

An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What make...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2013-12, Vol.19 (12), p.2306-2315
Main Authors: Borkin, Michelle A., Vo, Azalea A., Bylinskii, Zoya, Isola, Phillip, Sunkavalli, Shashank, Oliva, Aude, Pfister, Hanspeter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293
cites cdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293
container_end_page 2315
container_issue 12
container_start_page 2306
container_title IEEE transactions on visualization and computer graphics
container_volume 19
creator Borkin, Michelle A.
Vo, Azalea A.
Bylinskii, Zoya
Isola, Phillip
Sunkavalli, Shashank
Oliva, Aude
Pfister, Hanspeter
description An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.
doi_str_mv 10.1109/TVCG.2013.234
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2013_234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6634103</ieee_id><sourcerecordid>3102743751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</originalsourceid><addsrcrecordid>eNqN0M9LwzAUB_AgipvToydBCiJ46Xz52eYkMnQKG17mPIbXNsXOdp1Ne9C_3pTNHTx5SiAfvnnvS8g5hTGloG8Xy8l0zIDyMePigAypFjQECerQ3yGKQqaYGpAT51YAVIhYH5MBEyBppKMhuX57xzaY44d1AQbLwnVYFt_YFvU6mNuqbjAp7d0pOcqxdPZsd47I6-PDYvIUzl6mz5P7WZgKGrdhHsk0xkRxzfwUMc1BsYxxxhTmyEVGKSbIdSat0BhZtBwUCpQs1-iZ5iNys83dNPVnZ11rqsKltixxbevOGSqUkJJqLv9BuYiEnwQ8vfpDV3XXrP0iXgn_LYDuA8OtSpvaucbmZtMUFTZfhoLpqzZ91aav2viqvb_cpXZJZbO9_u3Wg4stKKy1-2eluKDA-Q-ayX4N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442930095</pqid></control><display><type>article</type><title>What Makes a Visualization Memorable?</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Borkin, Michelle A. ; Vo, Azalea A. ; Bylinskii, Zoya ; Isola, Phillip ; Sunkavalli, Shashank ; Oliva, Aude ; Pfister, Hanspeter</creator><creatorcontrib>Borkin, Michelle A. ; Vo, Azalea A. ; Bylinskii, Zoya ; Isola, Phillip ; Sunkavalli, Shashank ; Oliva, Aude ; Pfister, Hanspeter</creatorcontrib><description>An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2013.234</identifier><identifier>PMID: 24051797</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial Intelligence ; Color ; Communities ; Cues ; Data visualization ; Density ; Encoding ; Governments ; Graphs ; Human ; Humans ; Image Interpretation, Computer-Assisted - methods ; Information technology ; information visualization ; memorability ; Memory - physiology ; Pattern Recognition, Visual - physiology ; Task Performance and Analysis ; Taxonomy ; User-Computer Interface ; Visual ; Visualization ; Visualization taxonomy</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-12, Vol.19 (12), p.2306-2315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</citedby><cites>FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6634103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24051797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borkin, Michelle A.</creatorcontrib><creatorcontrib>Vo, Azalea A.</creatorcontrib><creatorcontrib>Bylinskii, Zoya</creatorcontrib><creatorcontrib>Isola, Phillip</creatorcontrib><creatorcontrib>Sunkavalli, Shashank</creatorcontrib><creatorcontrib>Oliva, Aude</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><title>What Makes a Visualization Memorable?</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.</description><subject>Artificial Intelligence</subject><subject>Color</subject><subject>Communities</subject><subject>Cues</subject><subject>Data visualization</subject><subject>Density</subject><subject>Encoding</subject><subject>Governments</subject><subject>Graphs</subject><subject>Human</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information technology</subject><subject>information visualization</subject><subject>memorability</subject><subject>Memory - physiology</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Task Performance and Analysis</subject><subject>Taxonomy</subject><subject>User-Computer Interface</subject><subject>Visual</subject><subject>Visualization</subject><subject>Visualization taxonomy</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0M9LwzAUB_AgipvToydBCiJ46Xz52eYkMnQKG17mPIbXNsXOdp1Ne9C_3pTNHTx5SiAfvnnvS8g5hTGloG8Xy8l0zIDyMePigAypFjQECerQ3yGKQqaYGpAT51YAVIhYH5MBEyBppKMhuX57xzaY44d1AQbLwnVYFt_YFvU6mNuqbjAp7d0pOcqxdPZsd47I6-PDYvIUzl6mz5P7WZgKGrdhHsk0xkRxzfwUMc1BsYxxxhTmyEVGKSbIdSat0BhZtBwUCpQs1-iZ5iNys83dNPVnZ11rqsKltixxbevOGSqUkJJqLv9BuYiEnwQ8vfpDV3XXrP0iXgn_LYDuA8OtSpvaucbmZtMUFTZfhoLpqzZ91aav2viqvb_cpXZJZbO9_u3Wg4stKKy1-2eluKDA-Q-ayX4N</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Borkin, Michelle A.</creator><creator>Vo, Azalea A.</creator><creator>Bylinskii, Zoya</creator><creator>Isola, Phillip</creator><creator>Sunkavalli, Shashank</creator><creator>Oliva, Aude</creator><creator>Pfister, Hanspeter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131201</creationdate><title>What Makes a Visualization Memorable?</title><author>Borkin, Michelle A. ; Vo, Azalea A. ; Bylinskii, Zoya ; Isola, Phillip ; Sunkavalli, Shashank ; Oliva, Aude ; Pfister, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Color</topic><topic>Communities</topic><topic>Cues</topic><topic>Data visualization</topic><topic>Density</topic><topic>Encoding</topic><topic>Governments</topic><topic>Graphs</topic><topic>Human</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information technology</topic><topic>information visualization</topic><topic>memorability</topic><topic>Memory - physiology</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Task Performance and Analysis</topic><topic>Taxonomy</topic><topic>User-Computer Interface</topic><topic>Visual</topic><topic>Visualization</topic><topic>Visualization taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borkin, Michelle A.</creatorcontrib><creatorcontrib>Vo, Azalea A.</creatorcontrib><creatorcontrib>Bylinskii, Zoya</creatorcontrib><creatorcontrib>Isola, Phillip</creatorcontrib><creatorcontrib>Sunkavalli, Shashank</creatorcontrib><creatorcontrib>Oliva, Aude</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borkin, Michelle A.</au><au>Vo, Azalea A.</au><au>Bylinskii, Zoya</au><au>Isola, Phillip</au><au>Sunkavalli, Shashank</au><au>Oliva, Aude</au><au>Pfister, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Makes a Visualization Memorable?</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>19</volume><issue>12</issue><spage>2306</spage><epage>2315</epage><pages>2306-2315</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24051797</pmid><doi>10.1109/TVCG.2013.234</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2013-12, Vol.19 (12), p.2306-2315
issn 1077-2626
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2013_234
source IEEE Electronic Library (IEL) Journals
subjects Artificial Intelligence
Color
Communities
Cues
Data visualization
Density
Encoding
Governments
Graphs
Human
Humans
Image Interpretation, Computer-Assisted - methods
Information technology
information visualization
memorability
Memory - physiology
Pattern Recognition, Visual - physiology
Task Performance and Analysis
Taxonomy
User-Computer Interface
Visual
Visualization
Visualization taxonomy
title What Makes a Visualization Memorable?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Makes%20a%20Visualization%20Memorable?&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Borkin,%20Michelle%20A.&rft.date=2013-12-01&rft.volume=19&rft.issue=12&rft.spage=2306&rft.epage=2315&rft.pages=2306-2315&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2013.234&rft_dat=%3Cproquest_cross%3E3102743751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-f75c8ab639294181f062d23226afa34d11aba39d5e49a7eae306a4a52f9a23293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1442930095&rft_id=info:pmid/24051797&rft_ieee_id=6634103&rfr_iscdi=true