Loading…
Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations
To convey neural network architectures in publications, appropriate visualizations are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack of a common visual grammar, significant time...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2021-06, Vol.27 (6), p.2980-2991 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-46155cafcddaa1620a5f1a289b42ab713c8bb472cc1be6b9b8ca935ea81690593 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-46155cafcddaa1620a5f1a289b42ab713c8bb472cc1be6b9b8ca935ea81690593 |
container_end_page | 2991 |
container_issue | 6 |
container_start_page | 2980 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 27 |
creator | Bauerle, Alex van Onzenoodt, Christian Ropinski, Timo |
description | To convey neural network architectures in publications, appropriate visualizations are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack of a common visual grammar, significant time investment, errors, and ambiguities. Current automatic network visualization tools focus on debugging the network itself and are not ideal for generating publication visualizations. Therefore, we present an approach to automate this process by translating network architectures specified in Keras into visualizations that can directly be embedded into any publication. To do so, we propose a visual grammar for convolutional neural networks (CNNs), which has been derived from an analysis of such figures extracted from all ICCV and CVPR papers published between 2013 and 2019. The proposed grammar incorporates visual encoding, network layout, layer aggregation, and legend generation. We have further realized our approach in an online system available to the community, which we have evaluated through expert feedback, and a quantitative study. It not only reduces the time needed to generate network visualizations for publications, but also enables a unified and unambiguous visualization design. |
doi_str_mv | 10.1109/TVCG.2021.3057483 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2021_3057483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9350177</ieee_id><sourcerecordid>2525790636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-46155cafcddaa1620a5f1a289b42ab713c8bb472cc1be6b9b8ca935ea81690593</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0Eol_8AFSpstRLLxv87fUxikpAqgKHtFfLdmbBlXe32LuH8OtxSOiB09gzz7yamRehj5QsKCXm0_ZptV4wwuiCE6lFy9-gc2oEbYgk6m19E60bppg6QxelPBNChWjNe3TGuZSKUHKO0gYm9hQLbvAS1zi7hNfZ9b3LuBszXs7T2LspBpfSHq9hgFx_ww_8ffapZqc4Ds3WxTRm2OHVZoOXOfyME4RpznBSjL__cuUKvetcKvDhFC_R4-f77epL8_Bt_XW1fGgCF2ZqhKJSBteF3c45qhhxsqOOtcYL5rymPLTeC81CoB6UN74NznAJrqXKEGn4Jbo76r7k8dcMZbJ9LAFScgOMc7FMtFoL3TJe0dv_0OdxzkOdzjLJpDZEcVUpeqRCHkvJ0NmXHOuJ9pYSe7DCHqywByvsyYrac3NSnn0Pu9eOf7evwPURiADwWq6LEKo1_wPAd40e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525790636</pqid></control><display><type>article</type><title>Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bauerle, Alex ; van Onzenoodt, Christian ; Ropinski, Timo</creator><creatorcontrib>Bauerle, Alex ; van Onzenoodt, Christian ; Ropinski, Timo</creatorcontrib><description>To convey neural network architectures in publications, appropriate visualizations are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack of a common visual grammar, significant time investment, errors, and ambiguities. Current automatic network visualization tools focus on debugging the network itself and are not ideal for generating publication visualizations. Therefore, we present an approach to automate this process by translating network architectures specified in Keras into visualizations that can directly be embedded into any publication. To do so, we propose a visual grammar for convolutional neural networks (CNNs), which has been derived from an analysis of such figures extracted from all ICCV and CVPR papers published between 2013 and 2019. The proposed grammar incorporates visual encoding, network layout, layer aggregation, and legend generation. We have further realized our approach in an online system available to the community, which we have evaluated through expert feedback, and a quantitative study. It not only reduces the time needed to generate network visualizations for publications, but also enables a unified and unambiguous visualization design.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3057483</identifier><identifier>PMID: 33556010</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>architecture visualization ; Artificial neural networks ; Computer architecture ; Data visualization ; Documents ; Encoding ; Grammar ; graph layouting ; Layout ; Network architecture ; Neural networks ; On-line systems ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-06, Vol.27 (6), p.2980-2991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-46155cafcddaa1620a5f1a289b42ab713c8bb472cc1be6b9b8ca935ea81690593</citedby><cites>FETCH-LOGICAL-c349t-46155cafcddaa1620a5f1a289b42ab713c8bb472cc1be6b9b8ca935ea81690593</cites><orcidid>0000-0003-3886-8799 ; 0000-0002-7857-5512 ; 0000-0002-5951-6795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9350177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33556010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauerle, Alex</creatorcontrib><creatorcontrib>van Onzenoodt, Christian</creatorcontrib><creatorcontrib>Ropinski, Timo</creatorcontrib><title>Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>To convey neural network architectures in publications, appropriate visualizations are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack of a common visual grammar, significant time investment, errors, and ambiguities. Current automatic network visualization tools focus on debugging the network itself and are not ideal for generating publication visualizations. Therefore, we present an approach to automate this process by translating network architectures specified in Keras into visualizations that can directly be embedded into any publication. To do so, we propose a visual grammar for convolutional neural networks (CNNs), which has been derived from an analysis of such figures extracted from all ICCV and CVPR papers published between 2013 and 2019. The proposed grammar incorporates visual encoding, network layout, layer aggregation, and legend generation. We have further realized our approach in an online system available to the community, which we have evaluated through expert feedback, and a quantitative study. It not only reduces the time needed to generate network visualizations for publications, but also enables a unified and unambiguous visualization design.</description><subject>architecture visualization</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Data visualization</subject><subject>Documents</subject><subject>Encoding</subject><subject>Grammar</subject><subject>graph layouting</subject><subject>Layout</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>On-line systems</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0Eol_8AFSpstRLLxv87fUxikpAqgKHtFfLdmbBlXe32LuH8OtxSOiB09gzz7yamRehj5QsKCXm0_ZptV4wwuiCE6lFy9-gc2oEbYgk6m19E60bppg6QxelPBNChWjNe3TGuZSKUHKO0gYm9hQLbvAS1zi7hNfZ9b3LuBszXs7T2LspBpfSHq9hgFx_ww_8ffapZqc4Ds3WxTRm2OHVZoOXOfyME4RpznBSjL__cuUKvetcKvDhFC_R4-f77epL8_Bt_XW1fGgCF2ZqhKJSBteF3c45qhhxsqOOtcYL5rymPLTeC81CoB6UN74NznAJrqXKEGn4Jbo76r7k8dcMZbJ9LAFScgOMc7FMtFoL3TJe0dv_0OdxzkOdzjLJpDZEcVUpeqRCHkvJ0NmXHOuJ9pYSe7DCHqywByvsyYrac3NSnn0Pu9eOf7evwPURiADwWq6LEKo1_wPAd40e</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Bauerle, Alex</creator><creator>van Onzenoodt, Christian</creator><creator>Ropinski, Timo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3886-8799</orcidid><orcidid>https://orcid.org/0000-0002-7857-5512</orcidid><orcidid>https://orcid.org/0000-0002-5951-6795</orcidid></search><sort><creationdate>20210601</creationdate><title>Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations</title><author>Bauerle, Alex ; van Onzenoodt, Christian ; Ropinski, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-46155cafcddaa1620a5f1a289b42ab713c8bb472cc1be6b9b8ca935ea81690593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>architecture visualization</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Data visualization</topic><topic>Documents</topic><topic>Encoding</topic><topic>Grammar</topic><topic>graph layouting</topic><topic>Layout</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>On-line systems</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauerle, Alex</creatorcontrib><creatorcontrib>van Onzenoodt, Christian</creatorcontrib><creatorcontrib>Ropinski, Timo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauerle, Alex</au><au>van Onzenoodt, Christian</au><au>Ropinski, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>27</volume><issue>6</issue><spage>2980</spage><epage>2991</epage><pages>2980-2991</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>To convey neural network architectures in publications, appropriate visualizations are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack of a common visual grammar, significant time investment, errors, and ambiguities. Current automatic network visualization tools focus on debugging the network itself and are not ideal for generating publication visualizations. Therefore, we present an approach to automate this process by translating network architectures specified in Keras into visualizations that can directly be embedded into any publication. To do so, we propose a visual grammar for convolutional neural networks (CNNs), which has been derived from an analysis of such figures extracted from all ICCV and CVPR papers published between 2013 and 2019. The proposed grammar incorporates visual encoding, network layout, layer aggregation, and legend generation. We have further realized our approach in an online system available to the community, which we have evaluated through expert feedback, and a quantitative study. It not only reduces the time needed to generate network visualizations for publications, but also enables a unified and unambiguous visualization design.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33556010</pmid><doi>10.1109/TVCG.2021.3057483</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3886-8799</orcidid><orcidid>https://orcid.org/0000-0002-7857-5512</orcidid><orcidid>https://orcid.org/0000-0002-5951-6795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2021-06, Vol.27 (6), p.2980-2991 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2021_3057483 |
source | IEEE Electronic Library (IEL) Journals |
subjects | architecture visualization Artificial neural networks Computer architecture Data visualization Documents Encoding Grammar graph layouting Layout Network architecture Neural networks On-line systems Visualization |
title | Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Net2Vis%20-%20A%20Visual%20Grammar%20for%20Automatically%20Generating%20Publication-Tailored%20CNN%20Architecture%20Visualizations&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Bauerle,%20Alex&rft.date=2021-06-01&rft.volume=27&rft.issue=6&rft.spage=2980&rft.epage=2991&rft.pages=2980-2991&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3057483&rft_dat=%3Cproquest_cross%3E2525790636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-46155cafcddaa1620a5f1a289b42ab713c8bb472cc1be6b9b8ca935ea81690593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525790636&rft_id=info:pmid/33556010&rft_ieee_id=9350177&rfr_iscdi=true |