Loading…
Interactive Dimensionality Reduction for Comparative Analysis
Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for s...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2022-01, Vol.28 (1), p.758-768 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983 |
container_end_page | 768 |
container_issue | 1 |
container_start_page | 758 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 28 |
creator | Fujiwara, Takanori Wei, Xinhai Zhao, Jian Ma, Kwan-Liu |
description | Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework. |
doi_str_mv | 10.1109/TVCG.2021.3114807 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2021_3114807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9555244</ieee_id><sourcerecordid>2578759412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6s4-swcPJWotFASpXsMmu4GUPOpuIvTfu7W1B08zzHwzzHwIXQOeAmD1sPpM51OCCUwpAEuwPEFjUAxizLE4DTmWMiaCiBG68H6NMTCWqHM0oowrkIKP0eOi7a3TRV992-ipamzrq67VddVvo3drhtDo2qjsXJR2zUY7_QvOArH1lb9EZ6Wuvb06xAn6eHlepa_x8m2-SGfLuKBM9bHExgJTBcsJkeHMnJSmyHWoGWZpLrgojDFcG5woKYXWRuScEkxzacpCJXSC7vd7N677Gqzvs6byha1r3dpu8BnhMpE8fE4CevcPXXeDC_cGSgAHIYFBoGBPFa7z3tky27iq0W6bAc52brOd22znNju4DTO3h81D3lhznPiTGYCbPVBZa49txTknjNEf67F9Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615167141</pqid></control><display><type>article</type><title>Interactive Dimensionality Reduction for Comparative Analysis</title><source>IEEE Xplore (Online service)</source><creator>Fujiwara, Takanori ; Wei, Xinhai ; Zhao, Jian ; Ma, Kwan-Liu</creator><creatorcontrib>Fujiwara, Takanori ; Wei, Xinhai ; Zhao, Jian ; Ma, Kwan-Liu</creatorcontrib><description>Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3114807</identifier><identifier>PMID: 34591765</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Comparative analysis ; contrastive learning ; Datasets ; Dimensionality reduction ; Discriminant analysis ; Flexibility ; interpretability ; Libraries ; Optimization ; Optimization algorithms ; Principal component analysis ; Reduction ; Task analysis ; visual analytics ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-01, Vol.28 (1), p.758-768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</citedby><cites>FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9555244$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34591765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiwara, Takanori</creatorcontrib><creatorcontrib>Wei, Xinhai</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Ma, Kwan-Liu</creatorcontrib><title>Interactive Dimensionality Reduction for Comparative Analysis</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>contrastive learning</subject><subject>Datasets</subject><subject>Dimensionality reduction</subject><subject>Discriminant analysis</subject><subject>Flexibility</subject><subject>interpretability</subject><subject>Libraries</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Principal component analysis</subject><subject>Reduction</subject><subject>Task analysis</subject><subject>visual analytics</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6s4-swcPJWotFASpXsMmu4GUPOpuIvTfu7W1B08zzHwzzHwIXQOeAmD1sPpM51OCCUwpAEuwPEFjUAxizLE4DTmWMiaCiBG68H6NMTCWqHM0oowrkIKP0eOi7a3TRV992-ipamzrq67VddVvo3drhtDo2qjsXJR2zUY7_QvOArH1lb9EZ6Wuvb06xAn6eHlepa_x8m2-SGfLuKBM9bHExgJTBcsJkeHMnJSmyHWoGWZpLrgojDFcG5woKYXWRuScEkxzacpCJXSC7vd7N677Gqzvs6byha1r3dpu8BnhMpE8fE4CevcPXXeDC_cGSgAHIYFBoGBPFa7z3tky27iq0W6bAc52brOd22znNju4DTO3h81D3lhznPiTGYCbPVBZa49txTknjNEf67F9Gg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Fujiwara, Takanori</creator><creator>Wei, Xinhai</creator><creator>Zhao, Jian</creator><creator>Ma, Kwan-Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>202201</creationdate><title>Interactive Dimensionality Reduction for Comparative Analysis</title><author>Fujiwara, Takanori ; Wei, Xinhai ; Zhao, Jian ; Ma, Kwan-Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>contrastive learning</topic><topic>Datasets</topic><topic>Dimensionality reduction</topic><topic>Discriminant analysis</topic><topic>Flexibility</topic><topic>interpretability</topic><topic>Libraries</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Principal component analysis</topic><topic>Reduction</topic><topic>Task analysis</topic><topic>visual analytics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Takanori</creatorcontrib><creatorcontrib>Wei, Xinhai</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Ma, Kwan-Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Takanori</au><au>Wei, Xinhai</au><au>Zhao, Jian</au><au>Ma, Kwan-Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Dimensionality Reduction for Comparative Analysis</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-01</date><risdate>2022</risdate><volume>28</volume><issue>1</issue><spage>758</spage><epage>768</epage><pages>758-768</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34591765</pmid><doi>10.1109/TVCG.2021.3114807</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2022-01, Vol.28 (1), p.758-768 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2021_3114807 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Comparative analysis contrastive learning Datasets Dimensionality reduction Discriminant analysis Flexibility interpretability Libraries Optimization Optimization algorithms Principal component analysis Reduction Task analysis visual analytics Visualization |
title | Interactive Dimensionality Reduction for Comparative Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Dimensionality%20Reduction%20for%20Comparative%20Analysis&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Fujiwara,%20Takanori&rft.date=2022-01&rft.volume=28&rft.issue=1&rft.spage=758&rft.epage=768&rft.pages=758-768&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3114807&rft_dat=%3Cproquest_cross%3E2578759412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615167141&rft_id=info:pmid/34591765&rft_ieee_id=9555244&rfr_iscdi=true |