Loading…

Interactive Dimensionality Reduction for Comparative Analysis

Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2022-01, Vol.28 (1), p.758-768
Main Authors: Fujiwara, Takanori, Wei, Xinhai, Zhao, Jian, Ma, Kwan-Liu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983
cites cdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983
container_end_page 768
container_issue 1
container_start_page 758
container_title IEEE transactions on visualization and computer graphics
container_volume 28
creator Fujiwara, Takanori
Wei, Xinhai
Zhao, Jian
Ma, Kwan-Liu
description Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.
doi_str_mv 10.1109/TVCG.2021.3114807
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2021_3114807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9555244</ieee_id><sourcerecordid>2578759412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6s4-swcPJWotFASpXsMmu4GUPOpuIvTfu7W1B08zzHwzzHwIXQOeAmD1sPpM51OCCUwpAEuwPEFjUAxizLE4DTmWMiaCiBG68H6NMTCWqHM0oowrkIKP0eOi7a3TRV992-ipamzrq67VddVvo3drhtDo2qjsXJR2zUY7_QvOArH1lb9EZ6Wuvb06xAn6eHlepa_x8m2-SGfLuKBM9bHExgJTBcsJkeHMnJSmyHWoGWZpLrgojDFcG5woKYXWRuScEkxzacpCJXSC7vd7N677Gqzvs6byha1r3dpu8BnhMpE8fE4CevcPXXeDC_cGSgAHIYFBoGBPFa7z3tky27iq0W6bAc52brOd22znNju4DTO3h81D3lhznPiTGYCbPVBZa49txTknjNEf67F9Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615167141</pqid></control><display><type>article</type><title>Interactive Dimensionality Reduction for Comparative Analysis</title><source>IEEE Xplore (Online service)</source><creator>Fujiwara, Takanori ; Wei, Xinhai ; Zhao, Jian ; Ma, Kwan-Liu</creator><creatorcontrib>Fujiwara, Takanori ; Wei, Xinhai ; Zhao, Jian ; Ma, Kwan-Liu</creatorcontrib><description>Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3114807</identifier><identifier>PMID: 34591765</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Comparative analysis ; contrastive learning ; Datasets ; Dimensionality reduction ; Discriminant analysis ; Flexibility ; interpretability ; Libraries ; Optimization ; Optimization algorithms ; Principal component analysis ; Reduction ; Task analysis ; visual analytics ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-01, Vol.28 (1), p.758-768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</citedby><cites>FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9555244$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34591765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiwara, Takanori</creatorcontrib><creatorcontrib>Wei, Xinhai</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Ma, Kwan-Liu</creatorcontrib><title>Interactive Dimensionality Reduction for Comparative Analysis</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>contrastive learning</subject><subject>Datasets</subject><subject>Dimensionality reduction</subject><subject>Discriminant analysis</subject><subject>Flexibility</subject><subject>interpretability</subject><subject>Libraries</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Principal component analysis</subject><subject>Reduction</subject><subject>Task analysis</subject><subject>visual analytics</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6s4-swcPJWotFASpXsMmu4GUPOpuIvTfu7W1B08zzHwzzHwIXQOeAmD1sPpM51OCCUwpAEuwPEFjUAxizLE4DTmWMiaCiBG68H6NMTCWqHM0oowrkIKP0eOi7a3TRV992-ipamzrq67VddVvo3drhtDo2qjsXJR2zUY7_QvOArH1lb9EZ6Wuvb06xAn6eHlepa_x8m2-SGfLuKBM9bHExgJTBcsJkeHMnJSmyHWoGWZpLrgojDFcG5woKYXWRuScEkxzacpCJXSC7vd7N677Gqzvs6byha1r3dpu8BnhMpE8fE4CevcPXXeDC_cGSgAHIYFBoGBPFa7z3tky27iq0W6bAc52brOd22znNju4DTO3h81D3lhznPiTGYCbPVBZa49txTknjNEf67F9Gg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Fujiwara, Takanori</creator><creator>Wei, Xinhai</creator><creator>Zhao, Jian</creator><creator>Ma, Kwan-Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>202201</creationdate><title>Interactive Dimensionality Reduction for Comparative Analysis</title><author>Fujiwara, Takanori ; Wei, Xinhai ; Zhao, Jian ; Ma, Kwan-Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>contrastive learning</topic><topic>Datasets</topic><topic>Dimensionality reduction</topic><topic>Discriminant analysis</topic><topic>Flexibility</topic><topic>interpretability</topic><topic>Libraries</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Principal component analysis</topic><topic>Reduction</topic><topic>Task analysis</topic><topic>visual analytics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Takanori</creatorcontrib><creatorcontrib>Wei, Xinhai</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Ma, Kwan-Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Takanori</au><au>Wei, Xinhai</au><au>Zhao, Jian</au><au>Ma, Kwan-Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Dimensionality Reduction for Comparative Analysis</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-01</date><risdate>2022</risdate><volume>28</volume><issue>1</issue><spage>758</spage><epage>768</epage><pages>758-768</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34591765</pmid><doi>10.1109/TVCG.2021.3114807</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2022-01, Vol.28 (1), p.758-768
issn 1077-2626
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2021_3114807
source IEEE Xplore (Online service)
subjects Algorithms
Comparative analysis
contrastive learning
Datasets
Dimensionality reduction
Discriminant analysis
Flexibility
interpretability
Libraries
Optimization
Optimization algorithms
Principal component analysis
Reduction
Task analysis
visual analytics
Visualization
title Interactive Dimensionality Reduction for Comparative Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Dimensionality%20Reduction%20for%20Comparative%20Analysis&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Fujiwara,%20Takanori&rft.date=2022-01&rft.volume=28&rft.issue=1&rft.spage=758&rft.epage=768&rft.pages=758-768&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3114807&rft_dat=%3Cproquest_cross%3E2578759412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-70de149c4b227807b2fdcbae14d4e3b656cddd5ad089776aad6b53203b7dfc983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615167141&rft_id=info:pmid/34591765&rft_ieee_id=9555244&rfr_iscdi=true