Loading…
Non-Rigid Registration Via Intelligent Adaptive Feedback Control
Preserving features or local shape characteristics of a mesh using conventional non-rigid registration methods is always difficult, as the preservation and deformation are competing with each other. The challenge is to find a balance between these two terms in the process of the registration, especi...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2024-08, Vol.30 (8), p.4910-4926 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-86b3d5c78e161c99e2a2ef4a5f6f4f1f7b0451cb09134b83f302473cd41fcda53 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-86b3d5c78e161c99e2a2ef4a5f6f4f1f7b0451cb09134b83f302473cd41fcda53 |
container_end_page | 4926 |
container_issue | 8 |
container_start_page | 4910 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 30 |
creator | Tajdari, Farzam Huysmans, Toon Song, Yu |
description | Preserving features or local shape characteristics of a mesh using conventional non-rigid registration methods is always difficult, as the preservation and deformation are competing with each other. The challenge is to find a balance between these two terms in the process of the registration, especially in presence of artefacts in the mesh. We present a non-rigid Iterative Closest Points (ICP) algorithm which addresses the challenge as a control problem. An adaptive feedback control scheme with global asymptotic stability is derived to control the stiffness ratio for maximum feature preservation and minimum mesh quality loss during the registration process. A cost function is formulated with the distance term and the stiffness term where the initial stiffness ratio value is defined by an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based predictor regarding the source mesh and the target mesh topology, and the distance between the correspondences. During the registration process, the stiffness ratio of each vertex is continuously adjusted by the intrinsic information, represented by shape descriptors, of the surrounding surface as well as the steps in the registration process. Besides, the estimated process-dependent stiffness ratios are used as dynamic weights for establishing the correspondences in each step of the registration. Experiments on simple geometric shapes as well as 3D scanning datasets indicated that the proposed approach outperforms current methodologies, especially for the regions where features are not eminent and/or there exist interferences between/among features, due to its ability to embed the inherent properties of the surface in the process of the mesh registration. |
doi_str_mv | 10.1109/TVCG.2023.3283990 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2023_3283990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10146441</ieee_id><sourcerecordid>2824687316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-86b3d5c78e161c99e2a2ef4a5f6f4f1f7b0451cb09134b83f302473cd41fcda53</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMobk5_gCBS8MWXztwkTZs3x3BzMBTG3GtI05uRubWz6QT_vR2bIj7d-_Cdw-Ej5BpoH4Cqh_liOO4zynifs4wrRU9IF5SAmCZUnrY_TdOYSSY75CKEFaUgRKbOSYenLFMSki55fKnKeOaXvohmuPShqU3jqzJaeBNNygbXa7_EsokGhdk2_hOjEWKRG_seDauyqav1JTlzZh3w6nh75G30NB8-x9PX8WQ4mMaWJ7SJM5nzIrFphiDBKoXMMHTCJE464cClORUJ2Jwq4CLPuOOUiZTbQoCzhUl4j9wferd19bHD0OiND7bdZ0qsdkGzjAmZpRxki979Q1fVri7bdZrTNBFM0tZZj8CBsnUVQo1Ob2u_MfWXBqr3evVer97r1Ue9beb22LzLN1j8Jn58tsDNAfCI-KcQhBQC-Ddi_HzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426002</pqid></control><display><type>article</type><title>Non-Rigid Registration Via Intelligent Adaptive Feedback Control</title><source>IEEE Xplore (Online service)</source><creator>Tajdari, Farzam ; Huysmans, Toon ; Song, Yu</creator><creatorcontrib>Tajdari, Farzam ; Huysmans, Toon ; Song, Yu</creatorcontrib><description>Preserving features or local shape characteristics of a mesh using conventional non-rigid registration methods is always difficult, as the preservation and deformation are competing with each other. The challenge is to find a balance between these two terms in the process of the registration, especially in presence of artefacts in the mesh. We present a non-rigid Iterative Closest Points (ICP) algorithm which addresses the challenge as a control problem. An adaptive feedback control scheme with global asymptotic stability is derived to control the stiffness ratio for maximum feature preservation and minimum mesh quality loss during the registration process. A cost function is formulated with the distance term and the stiffness term where the initial stiffness ratio value is defined by an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based predictor regarding the source mesh and the target mesh topology, and the distance between the correspondences. During the registration process, the stiffness ratio of each vertex is continuously adjusted by the intrinsic information, represented by shape descriptors, of the surrounding surface as well as the steps in the registration process. Besides, the estimated process-dependent stiffness ratios are used as dynamic weights for establishing the correspondences in each step of the registration. Experiments on simple geometric shapes as well as 3D scanning datasets indicated that the proposed approach outperforms current methodologies, especially for the regions where features are not eminent and/or there exist interferences between/among features, due to its ability to embed the inherent properties of the surface in the process of the mesh registration.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2023.3283990</identifier><identifier>PMID: 37289615</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Algorithms ; ANFIS predictor ; Artificial neural networks ; Cost function ; Deformation ; Feedback control ; Fuzzy logic ; Geometry ; global asymptotic stability ; Iterative methods ; mesh quality ; non-rigid registration ; Registration ; Shape ; shape descriptor ; Stiffness ; Surface treatment ; Three-dimensional displays ; Topology</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-08, Vol.30 (8), p.4910-4926</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-86b3d5c78e161c99e2a2ef4a5f6f4f1f7b0451cb09134b83f302473cd41fcda53</citedby><cites>FETCH-LOGICAL-c350t-86b3d5c78e161c99e2a2ef4a5f6f4f1f7b0451cb09134b83f302473cd41fcda53</cites><orcidid>0000-0002-9293-7356 ; 0000-0001-7053-6458 ; 0000-0002-9542-1312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10146441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37289615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tajdari, Farzam</creatorcontrib><creatorcontrib>Huysmans, Toon</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><title>Non-Rigid Registration Via Intelligent Adaptive Feedback Control</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Preserving features or local shape characteristics of a mesh using conventional non-rigid registration methods is always difficult, as the preservation and deformation are competing with each other. The challenge is to find a balance between these two terms in the process of the registration, especially in presence of artefacts in the mesh. We present a non-rigid Iterative Closest Points (ICP) algorithm which addresses the challenge as a control problem. An adaptive feedback control scheme with global asymptotic stability is derived to control the stiffness ratio for maximum feature preservation and minimum mesh quality loss during the registration process. A cost function is formulated with the distance term and the stiffness term where the initial stiffness ratio value is defined by an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based predictor regarding the source mesh and the target mesh topology, and the distance between the correspondences. During the registration process, the stiffness ratio of each vertex is continuously adjusted by the intrinsic information, represented by shape descriptors, of the surrounding surface as well as the steps in the registration process. Besides, the estimated process-dependent stiffness ratios are used as dynamic weights for establishing the correspondences in each step of the registration. Experiments on simple geometric shapes as well as 3D scanning datasets indicated that the proposed approach outperforms current methodologies, especially for the regions where features are not eminent and/or there exist interferences between/among features, due to its ability to embed the inherent properties of the surface in the process of the mesh registration.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>ANFIS predictor</subject><subject>Artificial neural networks</subject><subject>Cost function</subject><subject>Deformation</subject><subject>Feedback control</subject><subject>Fuzzy logic</subject><subject>Geometry</subject><subject>global asymptotic stability</subject><subject>Iterative methods</subject><subject>mesh quality</subject><subject>non-rigid registration</subject><subject>Registration</subject><subject>Shape</subject><subject>shape descriptor</subject><subject>Stiffness</subject><subject>Surface treatment</subject><subject>Three-dimensional displays</subject><subject>Topology</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAUhYMobk5_gCBS8MWXztwkTZs3x3BzMBTG3GtI05uRubWz6QT_vR2bIj7d-_Cdw-Ej5BpoH4Cqh_liOO4zynifs4wrRU9IF5SAmCZUnrY_TdOYSSY75CKEFaUgRKbOSYenLFMSki55fKnKeOaXvohmuPShqU3jqzJaeBNNygbXa7_EsokGhdk2_hOjEWKRG_seDauyqav1JTlzZh3w6nh75G30NB8-x9PX8WQ4mMaWJ7SJM5nzIrFphiDBKoXMMHTCJE464cClORUJ2Jwq4CLPuOOUiZTbQoCzhUl4j9wferd19bHD0OiND7bdZ0qsdkGzjAmZpRxki979Q1fVri7bdZrTNBFM0tZZj8CBsnUVQo1Ob2u_MfWXBqr3evVer97r1Ue9beb22LzLN1j8Jn58tsDNAfCI-KcQhBQC-Ddi_HzU</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Tajdari, Farzam</creator><creator>Huysmans, Toon</creator><creator>Song, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9293-7356</orcidid><orcidid>https://orcid.org/0000-0001-7053-6458</orcidid><orcidid>https://orcid.org/0000-0002-9542-1312</orcidid></search><sort><creationdate>20240801</creationdate><title>Non-Rigid Registration Via Intelligent Adaptive Feedback Control</title><author>Tajdari, Farzam ; Huysmans, Toon ; Song, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-86b3d5c78e161c99e2a2ef4a5f6f4f1f7b0451cb09134b83f302473cd41fcda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>ANFIS predictor</topic><topic>Artificial neural networks</topic><topic>Cost function</topic><topic>Deformation</topic><topic>Feedback control</topic><topic>Fuzzy logic</topic><topic>Geometry</topic><topic>global asymptotic stability</topic><topic>Iterative methods</topic><topic>mesh quality</topic><topic>non-rigid registration</topic><topic>Registration</topic><topic>Shape</topic><topic>shape descriptor</topic><topic>Stiffness</topic><topic>Surface treatment</topic><topic>Three-dimensional displays</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tajdari, Farzam</creatorcontrib><creatorcontrib>Huysmans, Toon</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajdari, Farzam</au><au>Huysmans, Toon</au><au>Song, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Rigid Registration Via Intelligent Adaptive Feedback Control</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>30</volume><issue>8</issue><spage>4910</spage><epage>4926</epage><pages>4910-4926</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Preserving features or local shape characteristics of a mesh using conventional non-rigid registration methods is always difficult, as the preservation and deformation are competing with each other. The challenge is to find a balance between these two terms in the process of the registration, especially in presence of artefacts in the mesh. We present a non-rigid Iterative Closest Points (ICP) algorithm which addresses the challenge as a control problem. An adaptive feedback control scheme with global asymptotic stability is derived to control the stiffness ratio for maximum feature preservation and minimum mesh quality loss during the registration process. A cost function is formulated with the distance term and the stiffness term where the initial stiffness ratio value is defined by an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based predictor regarding the source mesh and the target mesh topology, and the distance between the correspondences. During the registration process, the stiffness ratio of each vertex is continuously adjusted by the intrinsic information, represented by shape descriptors, of the surrounding surface as well as the steps in the registration process. Besides, the estimated process-dependent stiffness ratios are used as dynamic weights for establishing the correspondences in each step of the registration. Experiments on simple geometric shapes as well as 3D scanning datasets indicated that the proposed approach outperforms current methodologies, especially for the regions where features are not eminent and/or there exist interferences between/among features, due to its ability to embed the inherent properties of the surface in the process of the mesh registration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37289615</pmid><doi>10.1109/TVCG.2023.3283990</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9293-7356</orcidid><orcidid>https://orcid.org/0000-0001-7053-6458</orcidid><orcidid>https://orcid.org/0000-0002-9542-1312</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2024-08, Vol.30 (8), p.4910-4926 |
issn | 1077-2626 1941-0506 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2023_3283990 |
source | IEEE Xplore (Online service) |
subjects | Adaptive control Adaptive systems Algorithms ANFIS predictor Artificial neural networks Cost function Deformation Feedback control Fuzzy logic Geometry global asymptotic stability Iterative methods mesh quality non-rigid registration Registration Shape shape descriptor Stiffness Surface treatment Three-dimensional displays Topology |
title | Non-Rigid Registration Via Intelligent Adaptive Feedback Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Rigid%20Registration%20Via%20Intelligent%20Adaptive%20Feedback%20Control&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Tajdari,%20Farzam&rft.date=2024-08-01&rft.volume=30&rft.issue=8&rft.spage=4910&rft.epage=4926&rft.pages=4910-4926&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2023.3283990&rft_dat=%3Cproquest_cross%3E2824687316%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-86b3d5c78e161c99e2a2ef4a5f6f4f1f7b0451cb09134b83f302473cd41fcda53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075426002&rft_id=info:pmid/37289615&rft_ieee_id=10146441&rfr_iscdi=true |