Loading…
Cell-Based Process Resilient Multiphase Clock Generation
Multiphase clock generation (MPCG) is a problem that aims to generate a sequence of clock signals with the same frequency and uniformly shifted phases. In this brief, we present a cell-based MPCG design with two technical merits. We use a process calibration scheme that makes the per-phase delay (de...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2013-12, Vol.21 (12), p.2348-2352 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiphase clock generation (MPCG) is a problem that aims to generate a sequence of clock signals with the same frequency and uniformly shifted phases. In this brief, we present a cell-based MPCG design with two technical merits. We use a process calibration scheme that makes the per-phase delay (defined as the timing difference between two consecutive phases of clock signals) highly accurate. We further exploit a so-called cyclic property to make the achievable per-phase delay much smaller than a buffer delay. A design with 16-phase clock signal (with the per-phase delay of only 100 ps) is used to demonstrate its effectiveness. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2012.2230347 |