Loading…
Systolic Gaussian Normal Basis Multiplier Architectures Suitable for High-Performance Applications
Normal basis multiplication in finite fields is vastly utilized in different applications, including error control coding and the like due to its advantageous characteristics and the fact that squaring of elements can be obtained without hardware complexity. In this brief, we present decomposition a...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2015-09, Vol.23 (9), p.1969-1972 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Normal basis multiplication in finite fields is vastly utilized in different applications, including error control coding and the like due to its advantageous characteristics and the fact that squaring of elements can be obtained without hardware complexity. In this brief, we present decomposition algorithms to develop novel systolic structures for digit-level Gaussian normal basis multiplication over GF(2 m ). The proposed architectures are suitable for high-performance applications, which require fast computations in finite fields with high throughputs. We also present the results of our application-specific integrated circuit synthesis using a 65-nm standard-cell library to benchmark the effectiveness of the proposed systolic architectures. The presented architectures for multiplication can result in more efficient and high-performance VLSI systems. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2014.2345774 |