Loading…

PUF-Based Secure Chaotic Random Number Generator Design Methodology

Pseudorandom number generators (PRNGs) play a pivotal role in generating key sequences of cryptographic protocols. Among different schemes, a simple chaotic PRNG (CPRNG) exhibits the property of being extremely sensitive to the initial seed and, hence, unpredictable. However, CPRNG is vulnerable if...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems 2020-07, Vol.28 (7), p.1740-1744
Main Authors: Kalanadhabhatta, Srisubha, Kumar, Deepak, Anumandla, Kiran Kumar, Reddy, S. Ashish, Acharyya, Amit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-efc874eddc6a40a317cb91d3976333c2b00ba41574d758081252ce60bc46fca23
cites cdi_FETCH-LOGICAL-c295t-efc874eddc6a40a317cb91d3976333c2b00ba41574d758081252ce60bc46fca23
container_end_page 1744
container_issue 7
container_start_page 1740
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 28
creator Kalanadhabhatta, Srisubha
Kumar, Deepak
Anumandla, Kiran Kumar
Reddy, S. Ashish
Acharyya, Amit
description Pseudorandom number generators (PRNGs) play a pivotal role in generating key sequences of cryptographic protocols. Among different schemes, a simple chaotic PRNG (CPRNG) exhibits the property of being extremely sensitive to the initial seed and, hence, unpredictable. However, CPRNG is vulnerable if the initial seed is compromised. In this brief, we propose a novel physical unclonable function-based CPRNG (PUF-CPRNG), where the initial seed is secured by generating it from PUF. Furthermore, the proposed PUF-CPRNG includes dynamic refreshing logic to ensure that the random numbers generated are nonperiodic. To further secure the PUF-CPRNG, the feedback values of CPRNG are fed from PUF. An hardware architecture for the proposed methodology has been designed, and the proof of concept implementation was carried out using Xilinx Virtex-7 field-programmable gate array (FPGA). The proposed PUF-CPRNG passes the statistical test NIST 800-22, ENT, and correlation analysis.
doi_str_mv 10.1109/TVLSI.2020.2979269
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2020_2979269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9046287</ieee_id><sourcerecordid>2418420084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-efc874eddc6a40a317cb91d3976333c2b00ba41574d758081252ce60bc46fca23</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A3pp4rk4-9Fu96goSIIfEfC62W6nUAJd3G0P_HuLEOfyzuF9ZpKHkFsKA0pBPcy_p7PJgAGDAVNSsVSdkR5NEhmrbs67HVIeZ4zCJbkKYQ1AhVDQI8PPxSh-MgGLaIa29RgNV8Y1lY2-TF24bfTebnP00Rhr9KZxPnrGUC3r6A2blSvcxi331-SiNJuAN6fsk8XoZT58jacf48nwcRpbppImxtJmUmBR2NQIMJxKmytacCVTzrllOUBuBE2kKGSSQUZZwiymkFuRltYw3if3x7s7735aDI1eu9bX3UvNBM0EA8hE12LHlvUuBI-l3vlqa_xeU9AHWfpPlj7I0idZHXR3hCpE_AcUiJRlkv8CCbxknA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418420084</pqid></control><display><type>article</type><title>PUF-Based Secure Chaotic Random Number Generator Design Methodology</title><source>IEEE Xplore (Online service)</source><creator>Kalanadhabhatta, Srisubha ; Kumar, Deepak ; Anumandla, Kiran Kumar ; Reddy, S. Ashish ; Acharyya, Amit</creator><creatorcontrib>Kalanadhabhatta, Srisubha ; Kumar, Deepak ; Anumandla, Kiran Kumar ; Reddy, S. Ashish ; Acharyya, Amit</creatorcontrib><description>Pseudorandom number generators (PRNGs) play a pivotal role in generating key sequences of cryptographic protocols. Among different schemes, a simple chaotic PRNG (CPRNG) exhibits the property of being extremely sensitive to the initial seed and, hence, unpredictable. However, CPRNG is vulnerable if the initial seed is compromised. In this brief, we propose a novel physical unclonable function-based CPRNG (PUF-CPRNG), where the initial seed is secured by generating it from PUF. Furthermore, the proposed PUF-CPRNG includes dynamic refreshing logic to ensure that the random numbers generated are nonperiodic. To further secure the PUF-CPRNG, the feedback values of CPRNG are fed from PUF. An hardware architecture for the proposed methodology has been designed, and the proof of concept implementation was carried out using Xilinx Virtex-7 field-programmable gate array (FPGA). The proposed PUF-CPRNG passes the statistical test NIST 800-22, ENT, and correlation analysis.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2020.2979269</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos ; Chaotic logistic map ; Correlation ; Correlation analysis ; Cryptography ; Field programmable gate arrays ; Generators ; hardware security ; Logic gates ; NIST ; Numbers ; physical unclonable function (PUF) ; Pseudorandom ; pseudorandom number generator (PRNG) ; Random numbers ; Sequences ; Statistical tests</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2020-07, Vol.28 (7), p.1740-1744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-efc874eddc6a40a317cb91d3976333c2b00ba41574d758081252ce60bc46fca23</citedby><cites>FETCH-LOGICAL-c295t-efc874eddc6a40a317cb91d3976333c2b00ba41574d758081252ce60bc46fca23</cites><orcidid>0000-0002-5636-0676 ; 0000-0002-2067-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9046287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kalanadhabhatta, Srisubha</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Anumandla, Kiran Kumar</creatorcontrib><creatorcontrib>Reddy, S. Ashish</creatorcontrib><creatorcontrib>Acharyya, Amit</creatorcontrib><title>PUF-Based Secure Chaotic Random Number Generator Design Methodology</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Pseudorandom number generators (PRNGs) play a pivotal role in generating key sequences of cryptographic protocols. Among different schemes, a simple chaotic PRNG (CPRNG) exhibits the property of being extremely sensitive to the initial seed and, hence, unpredictable. However, CPRNG is vulnerable if the initial seed is compromised. In this brief, we propose a novel physical unclonable function-based CPRNG (PUF-CPRNG), where the initial seed is secured by generating it from PUF. Furthermore, the proposed PUF-CPRNG includes dynamic refreshing logic to ensure that the random numbers generated are nonperiodic. To further secure the PUF-CPRNG, the feedback values of CPRNG are fed from PUF. An hardware architecture for the proposed methodology has been designed, and the proof of concept implementation was carried out using Xilinx Virtex-7 field-programmable gate array (FPGA). The proposed PUF-CPRNG passes the statistical test NIST 800-22, ENT, and correlation analysis.</description><subject>Chaos</subject><subject>Chaotic logistic map</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Cryptography</subject><subject>Field programmable gate arrays</subject><subject>Generators</subject><subject>hardware security</subject><subject>Logic gates</subject><subject>NIST</subject><subject>Numbers</subject><subject>physical unclonable function (PUF)</subject><subject>Pseudorandom</subject><subject>pseudorandom number generator (PRNG)</subject><subject>Random numbers</subject><subject>Sequences</subject><subject>Statistical tests</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQhjdGExH9A3pp4rk4-9Fu96goSIIfEfC62W6nUAJd3G0P_HuLEOfyzuF9ZpKHkFsKA0pBPcy_p7PJgAGDAVNSsVSdkR5NEhmrbs67HVIeZ4zCJbkKYQ1AhVDQI8PPxSh-MgGLaIa29RgNV8Y1lY2-TF24bfTebnP00Rhr9KZxPnrGUC3r6A2blSvcxi331-SiNJuAN6fsk8XoZT58jacf48nwcRpbppImxtJmUmBR2NQIMJxKmytacCVTzrllOUBuBE2kKGSSQUZZwiymkFuRltYw3if3x7s7735aDI1eu9bX3UvNBM0EA8hE12LHlvUuBI-l3vlqa_xeU9AHWfpPlj7I0idZHXR3hCpE_AcUiJRlkv8CCbxknA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kalanadhabhatta, Srisubha</creator><creator>Kumar, Deepak</creator><creator>Anumandla, Kiran Kumar</creator><creator>Reddy, S. Ashish</creator><creator>Acharyya, Amit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5636-0676</orcidid><orcidid>https://orcid.org/0000-0002-2067-8711</orcidid></search><sort><creationdate>20200701</creationdate><title>PUF-Based Secure Chaotic Random Number Generator Design Methodology</title><author>Kalanadhabhatta, Srisubha ; Kumar, Deepak ; Anumandla, Kiran Kumar ; Reddy, S. Ashish ; Acharyya, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-efc874eddc6a40a317cb91d3976333c2b00ba41574d758081252ce60bc46fca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaos</topic><topic>Chaotic logistic map</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Cryptography</topic><topic>Field programmable gate arrays</topic><topic>Generators</topic><topic>hardware security</topic><topic>Logic gates</topic><topic>NIST</topic><topic>Numbers</topic><topic>physical unclonable function (PUF)</topic><topic>Pseudorandom</topic><topic>pseudorandom number generator (PRNG)</topic><topic>Random numbers</topic><topic>Sequences</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalanadhabhatta, Srisubha</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Anumandla, Kiran Kumar</creatorcontrib><creatorcontrib>Reddy, S. Ashish</creatorcontrib><creatorcontrib>Acharyya, Amit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalanadhabhatta, Srisubha</au><au>Kumar, Deepak</au><au>Anumandla, Kiran Kumar</au><au>Reddy, S. Ashish</au><au>Acharyya, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PUF-Based Secure Chaotic Random Number Generator Design Methodology</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>28</volume><issue>7</issue><spage>1740</spage><epage>1744</epage><pages>1740-1744</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Pseudorandom number generators (PRNGs) play a pivotal role in generating key sequences of cryptographic protocols. Among different schemes, a simple chaotic PRNG (CPRNG) exhibits the property of being extremely sensitive to the initial seed and, hence, unpredictable. However, CPRNG is vulnerable if the initial seed is compromised. In this brief, we propose a novel physical unclonable function-based CPRNG (PUF-CPRNG), where the initial seed is secured by generating it from PUF. Furthermore, the proposed PUF-CPRNG includes dynamic refreshing logic to ensure that the random numbers generated are nonperiodic. To further secure the PUF-CPRNG, the feedback values of CPRNG are fed from PUF. An hardware architecture for the proposed methodology has been designed, and the proof of concept implementation was carried out using Xilinx Virtex-7 field-programmable gate array (FPGA). The proposed PUF-CPRNG passes the statistical test NIST 800-22, ENT, and correlation analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2020.2979269</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5636-0676</orcidid><orcidid>https://orcid.org/0000-0002-2067-8711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2020-07, Vol.28 (7), p.1740-1744
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2020_2979269
source IEEE Xplore (Online service)
subjects Chaos
Chaotic logistic map
Correlation
Correlation analysis
Cryptography
Field programmable gate arrays
Generators
hardware security
Logic gates
NIST
Numbers
physical unclonable function (PUF)
Pseudorandom
pseudorandom number generator (PRNG)
Random numbers
Sequences
Statistical tests
title PUF-Based Secure Chaotic Random Number Generator Design Methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PUF-Based%20Secure%20Chaotic%20Random%20Number%20Generator%20Design%20Methodology&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Kalanadhabhatta,%20Srisubha&rft.date=2020-07-01&rft.volume=28&rft.issue=7&rft.spage=1740&rft.epage=1744&rft.pages=1740-1744&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2020.2979269&rft_dat=%3Cproquest_cross%3E2418420084%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-efc874eddc6a40a317cb91d3976333c2b00ba41574d758081252ce60bc46fca23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418420084&rft_id=info:pmid/&rft_ieee_id=9046287&rfr_iscdi=true