Loading…
Robust mobile geo-location algorithm based on LS-SVM
Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to m...
Saved in:
Published in: | IEEE transactions on vehicular technology 2005-05, Vol.54 (3), p.1037-1041 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513 |
container_end_page | 1041 |
container_issue | 3 |
container_start_page | 1037 |
container_title | IEEE transactions on vehicular technology |
container_volume | 54 |
creator | Sun, G. Guo, W. |
description | Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy. |
doi_str_mv | 10.1109/TVT.2005.844676 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2005_844676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1433248</ieee_id><sourcerecordid>28083609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqUwM7BESMCU1o4df4yo4ksqQqKlq2U7TkmVxMVOBv57XFKpEgPT6e5-7-nuAXCJ4AQhKKbL1XKSQZhPOCGU0SMwQgKLVOBcHIMRhIinIif5KTgLYRNbQgQaAfLudB-6pHG6qm2yti6tnVFd5dpE1Wvnq-6zSbQKtkjiaL5IF6vXc3BSqjrYi30dg4_Hh-XsOZ2_Pb3M7uepwRx1aZExzXTJFNSFZQQiyDDXzHBCoTHMFKzQBcmswVorwTOaU65hblm8rqQ5wmNwN_huvfvqbehkUwVj61q11vVBckEzTBijkbz9l8w45JhCEcHrP-DG9b6NX0hOGSEk_3WbDpDxLgRvS7n1VaP8t0RQ7sKWMWy5C1sOYUfFzd5WBaPq0qvWVOEgo0wgIUjkrgaustYe1gTjjHD8A7GihUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867444576</pqid></control><display><type>article</type><title>Robust mobile geo-location algorithm based on LS-SVM</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, G. ; Guo, W.</creator><creatorcontrib>Sun, G. ; Guo, W.</creatorcontrib><description>Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2005.844676</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Base stations ; Cellular networks ; Density ; Equipments and installations ; Exact sciences and technology ; Fault tolerance ; FCC ; Geometry ; Least square (LS) support vector machine (SVM) ; Least squares method ; Mathematical analysis ; Mobile computing ; mobile geo-location ; Mobile radiocommunication systems ; Neural networks ; nonlight of sight (NLOS) ; Position (location) ; Radiocommunications ; Robustness ; Support vector machine classification ; Support vector machines ; Telecommunications ; Telecommunications and information theory ; Training ; Wireless networks</subject><ispartof>IEEE transactions on vehicular technology, 2005-05, Vol.54 (3), p.1037-1041</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</citedby><cites>FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1433248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16791994$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><title>Robust mobile geo-location algorithm based on LS-SVM</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Base stations</subject><subject>Cellular networks</subject><subject>Density</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>FCC</subject><subject>Geometry</subject><subject>Least square (LS) support vector machine (SVM)</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mobile computing</subject><subject>mobile geo-location</subject><subject>Mobile radiocommunication systems</subject><subject>Neural networks</subject><subject>nonlight of sight (NLOS)</subject><subject>Position (location)</subject><subject>Radiocommunications</subject><subject>Robustness</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Wireless networks</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqUwM7BESMCU1o4df4yo4ksqQqKlq2U7TkmVxMVOBv57XFKpEgPT6e5-7-nuAXCJ4AQhKKbL1XKSQZhPOCGU0SMwQgKLVOBcHIMRhIinIif5KTgLYRNbQgQaAfLudB-6pHG6qm2yti6tnVFd5dpE1Wvnq-6zSbQKtkjiaL5IF6vXc3BSqjrYi30dg4_Hh-XsOZ2_Pb3M7uepwRx1aZExzXTJFNSFZQQiyDDXzHBCoTHMFKzQBcmswVorwTOaU65hblm8rqQ5wmNwN_huvfvqbehkUwVj61q11vVBckEzTBijkbz9l8w45JhCEcHrP-DG9b6NX0hOGSEk_3WbDpDxLgRvS7n1VaP8t0RQ7sKWMWy5C1sOYUfFzd5WBaPq0qvWVOEgo0wgIUjkrgaustYe1gTjjHD8A7GihUE</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Sun, G.</creator><creator>Guo, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7SC</scope><scope>7TB</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20050501</creationdate><title>Robust mobile geo-location algorithm based on LS-SVM</title><author>Sun, G. ; Guo, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Base stations</topic><topic>Cellular networks</topic><topic>Density</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>FCC</topic><topic>Geometry</topic><topic>Least square (LS) support vector machine (SVM)</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mobile computing</topic><topic>mobile geo-location</topic><topic>Mobile radiocommunication systems</topic><topic>Neural networks</topic><topic>nonlight of sight (NLOS)</topic><topic>Position (location)</topic><topic>Radiocommunications</topic><topic>Robustness</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, G.</au><au>Guo, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust mobile geo-location algorithm based on LS-SVM</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>54</volume><issue>3</issue><spage>1037</spage><epage>1041</epage><pages>1037-1041</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2005.844676</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2005-05, Vol.54 (3), p.1037-1041 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVT_2005_844676 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Base stations Cellular networks Density Equipments and installations Exact sciences and technology Fault tolerance FCC Geometry Least square (LS) support vector machine (SVM) Least squares method Mathematical analysis Mobile computing mobile geo-location Mobile radiocommunication systems Neural networks nonlight of sight (NLOS) Position (location) Radiocommunications Robustness Support vector machine classification Support vector machines Telecommunications Telecommunications and information theory Training Wireless networks |
title | Robust mobile geo-location algorithm based on LS-SVM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20mobile%20geo-location%20algorithm%20based%20on%20LS-SVM&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Sun,%20G.&rft.date=2005-05-01&rft.volume=54&rft.issue=3&rft.spage=1037&rft.epage=1041&rft.pages=1037-1041&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2005.844676&rft_dat=%3Cproquest_cross%3E28083609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867444576&rft_id=info:pmid/&rft_ieee_id=1433248&rfr_iscdi=true |