Loading…

Robust mobile geo-location algorithm based on LS-SVM

Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2005-05, Vol.54 (3), p.1037-1041
Main Authors: Sun, G., Guo, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513
cites cdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513
container_end_page 1041
container_issue 3
container_start_page 1037
container_title IEEE transactions on vehicular technology
container_volume 54
creator Sun, G.
Guo, W.
description Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy.
doi_str_mv 10.1109/TVT.2005.844676
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2005_844676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1433248</ieee_id><sourcerecordid>28083609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqUwM7BESMCU1o4df4yo4ksqQqKlq2U7TkmVxMVOBv57XFKpEgPT6e5-7-nuAXCJ4AQhKKbL1XKSQZhPOCGU0SMwQgKLVOBcHIMRhIinIif5KTgLYRNbQgQaAfLudB-6pHG6qm2yti6tnVFd5dpE1Wvnq-6zSbQKtkjiaL5IF6vXc3BSqjrYi30dg4_Hh-XsOZ2_Pb3M7uepwRx1aZExzXTJFNSFZQQiyDDXzHBCoTHMFKzQBcmswVorwTOaU65hblm8rqQ5wmNwN_huvfvqbehkUwVj61q11vVBckEzTBijkbz9l8w45JhCEcHrP-DG9b6NX0hOGSEk_3WbDpDxLgRvS7n1VaP8t0RQ7sKWMWy5C1sOYUfFzd5WBaPq0qvWVOEgo0wgIUjkrgaustYe1gTjjHD8A7GihUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867444576</pqid></control><display><type>article</type><title>Robust mobile geo-location algorithm based on LS-SVM</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, G. ; Guo, W.</creator><creatorcontrib>Sun, G. ; Guo, W.</creatorcontrib><description>Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2005.844676</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Base stations ; Cellular networks ; Density ; Equipments and installations ; Exact sciences and technology ; Fault tolerance ; FCC ; Geometry ; Least square (LS) support vector machine (SVM) ; Least squares method ; Mathematical analysis ; Mobile computing ; mobile geo-location ; Mobile radiocommunication systems ; Neural networks ; nonlight of sight (NLOS) ; Position (location) ; Radiocommunications ; Robustness ; Support vector machine classification ; Support vector machines ; Telecommunications ; Telecommunications and information theory ; Training ; Wireless networks</subject><ispartof>IEEE transactions on vehicular technology, 2005-05, Vol.54 (3), p.1037-1041</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</citedby><cites>FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1433248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16791994$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><title>Robust mobile geo-location algorithm based on LS-SVM</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Base stations</subject><subject>Cellular networks</subject><subject>Density</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>FCC</subject><subject>Geometry</subject><subject>Least square (LS) support vector machine (SVM)</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mobile computing</subject><subject>mobile geo-location</subject><subject>Mobile radiocommunication systems</subject><subject>Neural networks</subject><subject>nonlight of sight (NLOS)</subject><subject>Position (location)</subject><subject>Radiocommunications</subject><subject>Robustness</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Wireless networks</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqUwM7BESMCU1o4df4yo4ksqQqKlq2U7TkmVxMVOBv57XFKpEgPT6e5-7-nuAXCJ4AQhKKbL1XKSQZhPOCGU0SMwQgKLVOBcHIMRhIinIif5KTgLYRNbQgQaAfLudB-6pHG6qm2yti6tnVFd5dpE1Wvnq-6zSbQKtkjiaL5IF6vXc3BSqjrYi30dg4_Hh-XsOZ2_Pb3M7uepwRx1aZExzXTJFNSFZQQiyDDXzHBCoTHMFKzQBcmswVorwTOaU65hblm8rqQ5wmNwN_huvfvqbehkUwVj61q11vVBckEzTBijkbz9l8w45JhCEcHrP-DG9b6NX0hOGSEk_3WbDpDxLgRvS7n1VaP8t0RQ7sKWMWy5C1sOYUfFzd5WBaPq0qvWVOEgo0wgIUjkrgaustYe1gTjjHD8A7GihUE</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Sun, G.</creator><creator>Guo, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7SC</scope><scope>7TB</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20050501</creationdate><title>Robust mobile geo-location algorithm based on LS-SVM</title><author>Sun, G. ; Guo, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Base stations</topic><topic>Cellular networks</topic><topic>Density</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>FCC</topic><topic>Geometry</topic><topic>Least square (LS) support vector machine (SVM)</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mobile computing</topic><topic>mobile geo-location</topic><topic>Mobile radiocommunication systems</topic><topic>Neural networks</topic><topic>nonlight of sight (NLOS)</topic><topic>Position (location)</topic><topic>Radiocommunications</topic><topic>Robustness</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, G.</au><au>Guo, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust mobile geo-location algorithm based on LS-SVM</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>54</volume><issue>3</issue><spage>1037</spage><epage>1041</epage><pages>1037-1041</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Support vector machine (SVM) is powerful to solve problems such as nonlinear classification, function estimation and density estimation. It has also led to many other recent developments in kernel-based learning fields. In this paper, we extend a high-accuracy, real-time, and fault-tolerant SVM to mobile geo-location problem, which has become an important component of pervasive computing. Simulation results show its basic location performance superior to conventional least square (LS) algorithm especially under nonlight of sight (NLOS) environments. Finally, we also analyze the impacts of training samples and training area on test location accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2005.844676</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2005-05, Vol.54 (3), p.1037-1041
issn 0018-9545
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2005_844676
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Base stations
Cellular networks
Density
Equipments and installations
Exact sciences and technology
Fault tolerance
FCC
Geometry
Least square (LS) support vector machine (SVM)
Least squares method
Mathematical analysis
Mobile computing
mobile geo-location
Mobile radiocommunication systems
Neural networks
nonlight of sight (NLOS)
Position (location)
Radiocommunications
Robustness
Support vector machine classification
Support vector machines
Telecommunications
Telecommunications and information theory
Training
Wireless networks
title Robust mobile geo-location algorithm based on LS-SVM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20mobile%20geo-location%20algorithm%20based%20on%20LS-SVM&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Sun,%20G.&rft.date=2005-05-01&rft.volume=54&rft.issue=3&rft.spage=1037&rft.epage=1041&rft.pages=1037-1041&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2005.844676&rft_dat=%3Cproquest_cross%3E28083609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-d27b7bf7a0bde74010738b7c8460cc7cd7dbd42ec3bba9826568b05e7001f6513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867444576&rft_id=info:pmid/&rft_ieee_id=1433248&rfr_iscdi=true