Loading…

Intercarrier interference self-cancellation space-frequency codes for MIMO-OFDM

Space-frequency (SF) codes that exploit both spatial and frequency diversity can be designed using orthogonal frequency division multiplexing (OFDM). However, OFDM is sensitive to frequency offset (FO), which generates intercarrier interference (ICI) among subcarriers. We investigate the pair-wise e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2005-09, Vol.54 (5), p.1729-1738
Main Authors: Dung Ngoc Dao, Tellambura, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Space-frequency (SF) codes that exploit both spatial and frequency diversity can be designed using orthogonal frequency division multiplexing (OFDM). However, OFDM is sensitive to frequency offset (FO), which generates intercarrier interference (ICI) among subcarriers. We investigate the pair-wise error probability (PEP) performance of SF codes over quasistatic, frequency selective Rayleigh fading channels with FO. We prove that the conventional SF code design criteria remain valid. The negligible performance loss for small FOs (less than 1%), however, increases with FO and with signal to noise ratio (SNR). While diversity can be used to mitigate ICI, as FO increases, the PEP does not rapidly decay with SNR. Therefore, we propose a new class of SF codes called ICI self-cancellation SF (ISC-SF) codes to combat ICI effectively even with high FO (10%). ISC-SF codes are constructed from existing full diversity space-time codes. Importantly, our code design provide a satisfactory tradeoff among error correction ability, ICI reduction and spectral efficiency. Furthermore, we demonstrate that ISC-SF codes can also mitigate the ICI caused by phase noise and time varying channels. Simulation results affirm the theoretical analysis.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2005.853477