Loading…
Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control
Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main...
Saved in:
Published in: | IEEE transactions on vehicular technology 2010-07, Vol.59 (6), p.2700-2710 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13 |
container_end_page | 2710 |
container_issue | 6 |
container_start_page | 2700 |
container_title | IEEE transactions on vehicular technology |
container_volume | 59 |
creator | Thounthong, P Pierfederici, S Martin, J.-P Hinaje, M Davat, B |
description | Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles. |
doi_str_mv | 10.1109/TVT.2010.2046759 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2010_2046759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5439985</ieee_id><sourcerecordid>2717248641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EEqWwI7FYYmBK61cSe4RAAamIoYU1cpxrlCqNg50M_fe4amFgurrS-e7jIHRNyYxSoubrz_WMkdgxIrI8VSdoQhVXieKpOkUTQqhMVCrSc3QRwia2Qig6QfDmamib7gvrrsaF6wbvWuwsXozQ4gLadr4ae_BG99o0g_P4ZVf5psYrN3oD-EEHqLHr8GNjLXjohka3eNHqoYMQfgdeojOr2wBXxzpFH4undfGSLN-fX4v7ZWI440PCVQYsEyY3eQZ1RjVUjNqcZHlmOada8yqvCBdGWquEloRwxkSVWmmiA6B8iu4Oc3vvvkcIQ7ltgolP6A7cGEpJpYybUh7J23_kJj7UxeNKSljOOBVSRIocKONdCB5s2ftmq_0uQuVeexm1l3vt5VF7jNwcIg0A_OGp4ErJlP8ANDh9cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027231484</pqid></control><display><type>article</type><title>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Thounthong, P ; Pierfederici, S ; Martin, J.-P ; Hinaje, M ; Davat, B</creator><creatorcontrib>Thounthong, P ; Pierfederici, S ; Martin, J.-P ; Hinaje, M ; Davat, B</creatorcontrib><description>Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2010.2046759</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Converters ; Costs ; current control ; Devices ; Dynamical systems ; Dynamics ; Electric vehicles ; Energy efficiency ; Energy storage ; Flatness ; Fuel cells ; fuel cells (FCs) ; Fuel economy ; Hybrid electric vehicles ; Hydrogen ; Mathematical models ; nonlinear ; Ripples ; supercapacitor ; Supercapacitors ; Switching converters ; Vehicle dynamics</subject><ispartof>IEEE transactions on vehicular technology, 2010-07, Vol.59 (6), p.2700-2710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</citedby><cites>FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5439985$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Thounthong, P</creatorcontrib><creatorcontrib>Pierfederici, S</creatorcontrib><creatorcontrib>Martin, J.-P</creatorcontrib><creatorcontrib>Hinaje, M</creatorcontrib><creatorcontrib>Davat, B</creatorcontrib><title>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.</description><subject>Capacitors</subject><subject>Converters</subject><subject>Costs</subject><subject>current control</subject><subject>Devices</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric vehicles</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Flatness</subject><subject>Fuel cells</subject><subject>fuel cells (FCs)</subject><subject>Fuel economy</subject><subject>Hybrid electric vehicles</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>nonlinear</subject><subject>Ripples</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Switching converters</subject><subject>Vehicle dynamics</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURi0EEqWwI7FYYmBK61cSe4RAAamIoYU1cpxrlCqNg50M_fe4amFgurrS-e7jIHRNyYxSoubrz_WMkdgxIrI8VSdoQhVXieKpOkUTQqhMVCrSc3QRwia2Qig6QfDmamib7gvrrsaF6wbvWuwsXozQ4gLadr4ae_BG99o0g_P4ZVf5psYrN3oD-EEHqLHr8GNjLXjohka3eNHqoYMQfgdeojOr2wBXxzpFH4undfGSLN-fX4v7ZWI440PCVQYsEyY3eQZ1RjVUjNqcZHlmOada8yqvCBdGWquEloRwxkSVWmmiA6B8iu4Oc3vvvkcIQ7ltgolP6A7cGEpJpYybUh7J23_kJj7UxeNKSljOOBVSRIocKONdCB5s2ftmq_0uQuVeexm1l3vt5VF7jNwcIg0A_OGp4ErJlP8ANDh9cw</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Thounthong, P</creator><creator>Pierfederici, S</creator><creator>Martin, J.-P</creator><creator>Hinaje, M</creator><creator>Davat, B</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>201007</creationdate><title>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</title><author>Thounthong, P ; Pierfederici, S ; Martin, J.-P ; Hinaje, M ; Davat, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Capacitors</topic><topic>Converters</topic><topic>Costs</topic><topic>current control</topic><topic>Devices</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric vehicles</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Flatness</topic><topic>Fuel cells</topic><topic>fuel cells (FCs)</topic><topic>Fuel economy</topic><topic>Hybrid electric vehicles</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>nonlinear</topic><topic>Ripples</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Switching converters</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thounthong, P</creatorcontrib><creatorcontrib>Pierfederici, S</creatorcontrib><creatorcontrib>Martin, J.-P</creatorcontrib><creatorcontrib>Hinaje, M</creatorcontrib><creatorcontrib>Davat, B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thounthong, P</au><au>Pierfederici, S</au><au>Martin, J.-P</au><au>Hinaje, M</au><au>Davat, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2010-07</date><risdate>2010</risdate><volume>59</volume><issue>6</issue><spage>2700</spage><epage>2710</epage><pages>2700-2710</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2010.2046759</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2010-07, Vol.59 (6), p.2700-2710 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVT_2010_2046759 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Capacitors Converters Costs current control Devices Dynamical systems Dynamics Electric vehicles Energy efficiency Energy storage Flatness Fuel cells fuel cells (FCs) Fuel economy Hybrid electric vehicles Hydrogen Mathematical models nonlinear Ripples supercapacitor Supercapacitors Switching converters Vehicle dynamics |
title | Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Control%20of%20Fuel%20Cell/Supercapacitor%20Hybrid%20Source%20Based%20on%20Differential%20Flatness%20Control&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Thounthong,%20P&rft.date=2010-07&rft.volume=59&rft.issue=6&rft.spage=2700&rft.epage=2710&rft.pages=2700-2710&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2010.2046759&rft_dat=%3Cproquest_cross%3E2717248641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027231484&rft_id=info:pmid/&rft_ieee_id=5439985&rfr_iscdi=true |