Loading…

Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control

Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2010-07, Vol.59 (6), p.2700-2710
Main Authors: Thounthong, P, Pierfederici, S, Martin, J.-P, Hinaje, M, Davat, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13
cites cdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13
container_end_page 2710
container_issue 6
container_start_page 2700
container_title IEEE transactions on vehicular technology
container_volume 59
creator Thounthong, P
Pierfederici, S
Martin, J.-P
Hinaje, M
Davat, B
description Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.
doi_str_mv 10.1109/TVT.2010.2046759
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2010_2046759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5439985</ieee_id><sourcerecordid>2717248641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EEqWwI7FYYmBK61cSe4RAAamIoYU1cpxrlCqNg50M_fe4amFgurrS-e7jIHRNyYxSoubrz_WMkdgxIrI8VSdoQhVXieKpOkUTQqhMVCrSc3QRwia2Qig6QfDmamib7gvrrsaF6wbvWuwsXozQ4gLadr4ae_BG99o0g_P4ZVf5psYrN3oD-EEHqLHr8GNjLXjohka3eNHqoYMQfgdeojOr2wBXxzpFH4undfGSLN-fX4v7ZWI440PCVQYsEyY3eQZ1RjVUjNqcZHlmOada8yqvCBdGWquEloRwxkSVWmmiA6B8iu4Oc3vvvkcIQ7ltgolP6A7cGEpJpYybUh7J23_kJj7UxeNKSljOOBVSRIocKONdCB5s2ftmq_0uQuVeexm1l3vt5VF7jNwcIg0A_OGp4ErJlP8ANDh9cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027231484</pqid></control><display><type>article</type><title>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Thounthong, P ; Pierfederici, S ; Martin, J.-P ; Hinaje, M ; Davat, B</creator><creatorcontrib>Thounthong, P ; Pierfederici, S ; Martin, J.-P ; Hinaje, M ; Davat, B</creatorcontrib><description>Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2010.2046759</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Converters ; Costs ; current control ; Devices ; Dynamical systems ; Dynamics ; Electric vehicles ; Energy efficiency ; Energy storage ; Flatness ; Fuel cells ; fuel cells (FCs) ; Fuel economy ; Hybrid electric vehicles ; Hydrogen ; Mathematical models ; nonlinear ; Ripples ; supercapacitor ; Supercapacitors ; Switching converters ; Vehicle dynamics</subject><ispartof>IEEE transactions on vehicular technology, 2010-07, Vol.59 (6), p.2700-2710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</citedby><cites>FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5439985$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Thounthong, P</creatorcontrib><creatorcontrib>Pierfederici, S</creatorcontrib><creatorcontrib>Martin, J.-P</creatorcontrib><creatorcontrib>Hinaje, M</creatorcontrib><creatorcontrib>Davat, B</creatorcontrib><title>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.</description><subject>Capacitors</subject><subject>Converters</subject><subject>Costs</subject><subject>current control</subject><subject>Devices</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric vehicles</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Flatness</subject><subject>Fuel cells</subject><subject>fuel cells (FCs)</subject><subject>Fuel economy</subject><subject>Hybrid electric vehicles</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>nonlinear</subject><subject>Ripples</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Switching converters</subject><subject>Vehicle dynamics</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURi0EEqWwI7FYYmBK61cSe4RAAamIoYU1cpxrlCqNg50M_fe4amFgurrS-e7jIHRNyYxSoubrz_WMkdgxIrI8VSdoQhVXieKpOkUTQqhMVCrSc3QRwia2Qig6QfDmamib7gvrrsaF6wbvWuwsXozQ4gLadr4ae_BG99o0g_P4ZVf5psYrN3oD-EEHqLHr8GNjLXjohka3eNHqoYMQfgdeojOr2wBXxzpFH4undfGSLN-fX4v7ZWI440PCVQYsEyY3eQZ1RjVUjNqcZHlmOada8yqvCBdGWquEloRwxkSVWmmiA6B8iu4Oc3vvvkcIQ7ltgolP6A7cGEpJpYybUh7J23_kJj7UxeNKSljOOBVSRIocKONdCB5s2ftmq_0uQuVeexm1l3vt5VF7jNwcIg0A_OGp4ErJlP8ANDh9cw</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Thounthong, P</creator><creator>Pierfederici, S</creator><creator>Martin, J.-P</creator><creator>Hinaje, M</creator><creator>Davat, B</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>201007</creationdate><title>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</title><author>Thounthong, P ; Pierfederici, S ; Martin, J.-P ; Hinaje, M ; Davat, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Capacitors</topic><topic>Converters</topic><topic>Costs</topic><topic>current control</topic><topic>Devices</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric vehicles</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Flatness</topic><topic>Fuel cells</topic><topic>fuel cells (FCs)</topic><topic>Fuel economy</topic><topic>Hybrid electric vehicles</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>nonlinear</topic><topic>Ripples</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Switching converters</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thounthong, P</creatorcontrib><creatorcontrib>Pierfederici, S</creatorcontrib><creatorcontrib>Martin, J.-P</creatorcontrib><creatorcontrib>Hinaje, M</creatorcontrib><creatorcontrib>Davat, B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thounthong, P</au><au>Pierfederici, S</au><au>Martin, J.-P</au><au>Hinaje, M</au><au>Davat, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2010-07</date><risdate>2010</risdate><volume>59</volume><issue>6</issue><spage>2700</spage><epage>2710</epage><pages>2700-2710</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2010.2046759</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2010-07, Vol.59 (6), p.2700-2710
issn 0018-9545
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2010_2046759
source IEEE Electronic Library (IEL) Journals
subjects Capacitors
Converters
Costs
current control
Devices
Dynamical systems
Dynamics
Electric vehicles
Energy efficiency
Energy storage
Flatness
Fuel cells
fuel cells (FCs)
Fuel economy
Hybrid electric vehicles
Hydrogen
Mathematical models
nonlinear
Ripples
supercapacitor
Supercapacitors
Switching converters
Vehicle dynamics
title Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Control%20of%20Fuel%20Cell/Supercapacitor%20Hybrid%20Source%20Based%20on%20Differential%20Flatness%20Control&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Thounthong,%20P&rft.date=2010-07&rft.volume=59&rft.issue=6&rft.spage=2700&rft.epage=2710&rft.pages=2700-2710&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2010.2046759&rft_dat=%3Cproquest_cross%3E2717248641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-396e264c7c76ed61aeb21f70676f331aa3b7b034c8ff94a8003224b5f8c110e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027231484&rft_id=info:pmid/&rft_ieee_id=5439985&rfr_iscdi=true