Loading…
Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA
The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantita...
Saved in:
Published in: | IEEE transactions on vehicular technology 2014-03, Vol.63 (3), p.1204-1222 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3 |
container_end_page | 1222 |
container_issue | 3 |
container_start_page | 1204 |
container_title | IEEE transactions on vehicular technology |
container_volume | 63 |
creator | Jiankang Zhang Sheng Chen Xiaomin Mu Hanzo, Lajos |
description | The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity. |
doi_str_mv | 10.1109/TVT.2013.2283069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2013_2283069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6606884</ieee_id><sourcerecordid>1520976112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVJoY7Te6AXQQnksvboY7XS0dhO2xCTQ91cF3lXShTWUiJpA_n3kbHJocxhGOaZl-FB6JLAjBBQ8-3DdkaBsBmlkoFQX9CEKKYqxWp1hiYARFaq5vU3dJ7Scxk5V2SC9uu3MIzZBa_je7UYHkN0-WlfLVJyKZse3wbnM14-ae_NgNcpu70-4Fj7Hm_HuAt4Mw7ZjclEvDLZdIftfGW60Dv_iG2I-P5mtZn_XW0WF-ir1UMy3099iv7drLfL39Xd_a8_y8Vd1TElcsW4MaBsA9xK2gtlVKNlzQWvKfRgGe8bRnvLJG3YjlNaK0H4TpWyO0WoZVN0fcx9ieF1NCm3e5c6MwzamzCmlpQg1QhCaEF__oc-hzH68l2hQAKAoKpQcKS6GFKKxrYvsYiI7y2B9uC_Lf7bg__25L-cXJ2Cder0YKP2nUufd1RyYDWBwv04cs4Y87kWAoSUnH0AhQ2M2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508000629</pqid></control><display><type>article</type><title>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiankang Zhang ; Sheng Chen ; Xiaomin Mu ; Hanzo, Lajos</creator><creatorcontrib>Jiankang Zhang ; Sheng Chen ; Xiaomin Mu ; Hanzo, Lajos</creatorcontrib><description>The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2013.2283069</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channel estimation ; Channels ; Coding, codes ; Decoders ; Decoding ; Detection, estimation, filtering, equalization, prediction ; Differential evolution algorithm (DEA) ; Evolutionary algorithms ; evolutionary algorithms (EAs) ; Exact sciences and technology ; genetic algorithm (GA) ; Information, signal and communications theory ; Iterative decoding ; joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding ; Joints ; Mud ; Multiplexing ; Multiuser detection ; OFDM ; Optimization ; Orthogonal Frequency Division Multiplexing ; orthogonal frequency-division multiplexing (OFDM) ; particle swarm optimization (PSO) ; repeated weighted boosting search (RWBS) ; Searching ; Signal and communications theory ; Signal, noise ; space-division multiple access (SDMA) ; Swarm intelligence ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on vehicular technology, 2014-03, Vol.63 (3), p.1204-1222</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</citedby><cites>FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6606884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28403510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiankang Zhang</creatorcontrib><creatorcontrib>Sheng Chen</creatorcontrib><creatorcontrib>Xiaomin Mu</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><title>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.</description><subject>Applied sciences</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Coding, codes</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Differential evolution algorithm (DEA)</subject><subject>Evolutionary algorithms</subject><subject>evolutionary algorithms (EAs)</subject><subject>Exact sciences and technology</subject><subject>genetic algorithm (GA)</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding</subject><subject>Joints</subject><subject>Mud</subject><subject>Multiplexing</subject><subject>Multiuser detection</subject><subject>OFDM</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>orthogonal frequency-division multiplexing (OFDM)</subject><subject>particle swarm optimization (PSO)</subject><subject>repeated weighted boosting search (RWBS)</subject><subject>Searching</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>space-division multiple access (SDMA)</subject><subject>Swarm intelligence</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVJoY7Te6AXQQnksvboY7XS0dhO2xCTQ91cF3lXShTWUiJpA_n3kbHJocxhGOaZl-FB6JLAjBBQ8-3DdkaBsBmlkoFQX9CEKKYqxWp1hiYARFaq5vU3dJ7Scxk5V2SC9uu3MIzZBa_je7UYHkN0-WlfLVJyKZse3wbnM14-ae_NgNcpu70-4Fj7Hm_HuAt4Mw7ZjclEvDLZdIftfGW60Dv_iG2I-P5mtZn_XW0WF-ir1UMy3099iv7drLfL39Xd_a8_y8Vd1TElcsW4MaBsA9xK2gtlVKNlzQWvKfRgGe8bRnvLJG3YjlNaK0H4TpWyO0WoZVN0fcx9ieF1NCm3e5c6MwzamzCmlpQg1QhCaEF__oc-hzH68l2hQAKAoKpQcKS6GFKKxrYvsYiI7y2B9uC_Lf7bg__25L-cXJ2Cder0YKP2nUufd1RyYDWBwv04cs4Y87kWAoSUnH0AhQ2M2w</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Jiankang Zhang</creator><creator>Sheng Chen</creator><creator>Xiaomin Mu</creator><creator>Hanzo, Lajos</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140301</creationdate><title>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</title><author>Jiankang Zhang ; Sheng Chen ; Xiaomin Mu ; Hanzo, Lajos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Coding, codes</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Differential evolution algorithm (DEA)</topic><topic>Evolutionary algorithms</topic><topic>evolutionary algorithms (EAs)</topic><topic>Exact sciences and technology</topic><topic>genetic algorithm (GA)</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding</topic><topic>Joints</topic><topic>Mud</topic><topic>Multiplexing</topic><topic>Multiuser detection</topic><topic>OFDM</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>orthogonal frequency-division multiplexing (OFDM)</topic><topic>particle swarm optimization (PSO)</topic><topic>repeated weighted boosting search (RWBS)</topic><topic>Searching</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>space-division multiple access (SDMA)</topic><topic>Swarm intelligence</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiankang Zhang</creatorcontrib><creatorcontrib>Sheng Chen</creatorcontrib><creatorcontrib>Xiaomin Mu</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiankang Zhang</au><au>Sheng Chen</au><au>Xiaomin Mu</au><au>Hanzo, Lajos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>63</volume><issue>3</issue><spage>1204</spage><epage>1222</epage><pages>1204-1222</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2013.2283069</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2014-03, Vol.63 (3), p.1204-1222 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVT_2013_2283069 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Channel estimation Channels Coding, codes Decoders Decoding Detection, estimation, filtering, equalization, prediction Differential evolution algorithm (DEA) Evolutionary algorithms evolutionary algorithms (EAs) Exact sciences and technology genetic algorithm (GA) Information, signal and communications theory Iterative decoding joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding Joints Mud Multiplexing Multiuser detection OFDM Optimization Orthogonal Frequency Division Multiplexing orthogonal frequency-division multiplexing (OFDM) particle swarm optimization (PSO) repeated weighted boosting search (RWBS) Searching Signal and communications theory Signal, noise space-division multiple access (SDMA) Swarm intelligence Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) |
title | Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary-Algorithm-Assisted%20Joint%20Channel%20Estimation%20and%20Turbo%20Multiuser%20Detection/Decoding%20for%20OFDM/SDMA&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Jiankang%20Zhang&rft.date=2014-03-01&rft.volume=63&rft.issue=3&rft.spage=1204&rft.epage=1222&rft.pages=1204-1222&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2013.2283069&rft_dat=%3Cproquest_cross%3E1520976112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1508000629&rft_id=info:pmid/&rft_ieee_id=6606884&rfr_iscdi=true |