Loading…

Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA

The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantita...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2014-03, Vol.63 (3), p.1204-1222
Main Authors: Jiankang Zhang, Sheng Chen, Xiaomin Mu, Hanzo, Lajos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3
cites cdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3
container_end_page 1222
container_issue 3
container_start_page 1204
container_title IEEE transactions on vehicular technology
container_volume 63
creator Jiankang Zhang
Sheng Chen
Xiaomin Mu
Hanzo, Lajos
description The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.
doi_str_mv 10.1109/TVT.2013.2283069
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2013_2283069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6606884</ieee_id><sourcerecordid>1520976112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVJoY7Te6AXQQnksvboY7XS0dhO2xCTQ91cF3lXShTWUiJpA_n3kbHJocxhGOaZl-FB6JLAjBBQ8-3DdkaBsBmlkoFQX9CEKKYqxWp1hiYARFaq5vU3dJ7Scxk5V2SC9uu3MIzZBa_je7UYHkN0-WlfLVJyKZse3wbnM14-ae_NgNcpu70-4Fj7Hm_HuAt4Mw7ZjclEvDLZdIftfGW60Dv_iG2I-P5mtZn_XW0WF-ir1UMy3099iv7drLfL39Xd_a8_y8Vd1TElcsW4MaBsA9xK2gtlVKNlzQWvKfRgGe8bRnvLJG3YjlNaK0H4TpWyO0WoZVN0fcx9ieF1NCm3e5c6MwzamzCmlpQg1QhCaEF__oc-hzH68l2hQAKAoKpQcKS6GFKKxrYvsYiI7y2B9uC_Lf7bg__25L-cXJ2Cder0YKP2nUufd1RyYDWBwv04cs4Y87kWAoSUnH0AhQ2M2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508000629</pqid></control><display><type>article</type><title>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiankang Zhang ; Sheng Chen ; Xiaomin Mu ; Hanzo, Lajos</creator><creatorcontrib>Jiankang Zhang ; Sheng Chen ; Xiaomin Mu ; Hanzo, Lajos</creatorcontrib><description>The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2013.2283069</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channel estimation ; Channels ; Coding, codes ; Decoders ; Decoding ; Detection, estimation, filtering, equalization, prediction ; Differential evolution algorithm (DEA) ; Evolutionary algorithms ; evolutionary algorithms (EAs) ; Exact sciences and technology ; genetic algorithm (GA) ; Information, signal and communications theory ; Iterative decoding ; joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding ; Joints ; Mud ; Multiplexing ; Multiuser detection ; OFDM ; Optimization ; Orthogonal Frequency Division Multiplexing ; orthogonal frequency-division multiplexing (OFDM) ; particle swarm optimization (PSO) ; repeated weighted boosting search (RWBS) ; Searching ; Signal and communications theory ; Signal, noise ; space-division multiple access (SDMA) ; Swarm intelligence ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on vehicular technology, 2014-03, Vol.63 (3), p.1204-1222</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</citedby><cites>FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6606884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28403510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiankang Zhang</creatorcontrib><creatorcontrib>Sheng Chen</creatorcontrib><creatorcontrib>Xiaomin Mu</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><title>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.</description><subject>Applied sciences</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Coding, codes</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Differential evolution algorithm (DEA)</subject><subject>Evolutionary algorithms</subject><subject>evolutionary algorithms (EAs)</subject><subject>Exact sciences and technology</subject><subject>genetic algorithm (GA)</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding</subject><subject>Joints</subject><subject>Mud</subject><subject>Multiplexing</subject><subject>Multiuser detection</subject><subject>OFDM</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>orthogonal frequency-division multiplexing (OFDM)</subject><subject>particle swarm optimization (PSO)</subject><subject>repeated weighted boosting search (RWBS)</subject><subject>Searching</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>space-division multiple access (SDMA)</subject><subject>Swarm intelligence</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVJoY7Te6AXQQnksvboY7XS0dhO2xCTQ91cF3lXShTWUiJpA_n3kbHJocxhGOaZl-FB6JLAjBBQ8-3DdkaBsBmlkoFQX9CEKKYqxWp1hiYARFaq5vU3dJ7Scxk5V2SC9uu3MIzZBa_je7UYHkN0-WlfLVJyKZse3wbnM14-ae_NgNcpu70-4Fj7Hm_HuAt4Mw7ZjclEvDLZdIftfGW60Dv_iG2I-P5mtZn_XW0WF-ir1UMy3099iv7drLfL39Xd_a8_y8Vd1TElcsW4MaBsA9xK2gtlVKNlzQWvKfRgGe8bRnvLJG3YjlNaK0H4TpWyO0WoZVN0fcx9ieF1NCm3e5c6MwzamzCmlpQg1QhCaEF__oc-hzH68l2hQAKAoKpQcKS6GFKKxrYvsYiI7y2B9uC_Lf7bg__25L-cXJ2Cder0YKP2nUufd1RyYDWBwv04cs4Y87kWAoSUnH0AhQ2M2w</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Jiankang Zhang</creator><creator>Sheng Chen</creator><creator>Xiaomin Mu</creator><creator>Hanzo, Lajos</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140301</creationdate><title>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</title><author>Jiankang Zhang ; Sheng Chen ; Xiaomin Mu ; Hanzo, Lajos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Coding, codes</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Differential evolution algorithm (DEA)</topic><topic>Evolutionary algorithms</topic><topic>evolutionary algorithms (EAs)</topic><topic>Exact sciences and technology</topic><topic>genetic algorithm (GA)</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding</topic><topic>Joints</topic><topic>Mud</topic><topic>Multiplexing</topic><topic>Multiuser detection</topic><topic>OFDM</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>orthogonal frequency-division multiplexing (OFDM)</topic><topic>particle swarm optimization (PSO)</topic><topic>repeated weighted boosting search (RWBS)</topic><topic>Searching</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>space-division multiple access (SDMA)</topic><topic>Swarm intelligence</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiankang Zhang</creatorcontrib><creatorcontrib>Sheng Chen</creatorcontrib><creatorcontrib>Xiaomin Mu</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiankang Zhang</au><au>Sheng Chen</au><au>Xiaomin Mu</au><au>Hanzo, Lajos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>63</volume><issue>3</issue><spage>1204</spage><epage>1222</epage><pages>1204-1222</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2013.2283069</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2014-03, Vol.63 (3), p.1204-1222
issn 0018-9545
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2013_2283069
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Channel estimation
Channels
Coding, codes
Decoders
Decoding
Detection, estimation, filtering, equalization, prediction
Differential evolution algorithm (DEA)
Evolutionary algorithms
evolutionary algorithms (EAs)
Exact sciences and technology
genetic algorithm (GA)
Information, signal and communications theory
Iterative decoding
joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding
Joints
Mud
Multiplexing
Multiuser detection
OFDM
Optimization
Orthogonal Frequency Division Multiplexing
orthogonal frequency-division multiplexing (OFDM)
particle swarm optimization (PSO)
repeated weighted boosting search (RWBS)
Searching
Signal and communications theory
Signal, noise
space-division multiple access (SDMA)
Swarm intelligence
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
title Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary-Algorithm-Assisted%20Joint%20Channel%20Estimation%20and%20Turbo%20Multiuser%20Detection/Decoding%20for%20OFDM/SDMA&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Jiankang%20Zhang&rft.date=2014-03-01&rft.volume=63&rft.issue=3&rft.spage=1204&rft.epage=1222&rft.pages=1204-1222&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2013.2283069&rft_dat=%3Cproquest_cross%3E1520976112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-34ee09f704f82d69e97a85464520d0f34d732df38273b42259614b9b9bfb912f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1508000629&rft_id=info:pmid/&rft_ieee_id=6606884&rfr_iscdi=true