Loading…
Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization
Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for...
Saved in:
Published in: | IEEE transactions on vehicular technology 2014-10, Vol.63 (8), p.3549-3559 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3 |
container_end_page | 3559 |
container_issue | 8 |
container_start_page | 3549 |
container_title | IEEE transactions on vehicular technology |
container_volume | 63 |
creator | Elbert, Philipp Nuesch, Tobias Ritter, Andreas Murgovski, Nikolce Guzzella, Lino |
description | Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm. |
doi_str_mv | 10.1109/TVT.2014.2304137 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2014_2304137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6730692</ieee_id><sourcerecordid>1671579632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxZfQQty090Ivgl56WUdafa2OrXGbQooPcXIVWu3IVtiVXGk3qfvXV8Yhh15mGPi9xxteVX0keEkIVtfbh-2ywYQtG4oZofKiWhBFVa0oV2-qBcakrRVn_LJ6l_NjORlTZFHt1mHnA6BNuN44h1YxTCkOyMWEpj2gdYC0O6JfJpgdjBAmFB0y6A6SNwO6OXbJ92g9gJ2St-jbnNGTNyeXJ_iDNofJj_6vmXwM76u3zgwZPrzsq-r--3q7uqlvNz9-rr7e1pZhPNWdVH1PuOywlKRh1rIGjGiYkw6D4C3juAMqCuxIJzorGW4d6zFw6gi0ll5Vd2ff_AyHudOH5EeTjjoarxNkMMnutd2bYYSUdQYteqyAGqaFVaBZa6VWrWRlgCEtA-gMKa5fzq6HFH_PkCc9-mxhGEyAOGdNhCyhlaBNQT__hz7GOYXyc6EIa7gkmBcKnymbYs4J3GtQgvWpT1361Kc-9UufRfLpLPEA8IoLSbFQDf0HU42a9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614257105</pqid></control><display><type>article</type><title>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Elbert, Philipp ; Nuesch, Tobias ; Ritter, Andreas ; Murgovski, Nikolce ; Guzzella, Lino</creator><creatorcontrib>Elbert, Philipp ; Nuesch, Tobias ; Ritter, Andreas ; Murgovski, Nikolce ; Guzzella, Lino</creatorcontrib><description>Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm.</description><identifier>ISSN: 0018-9545</identifier><identifier>ISSN: 1939-9359</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2014.2304137</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation methods ; Batteries ; Convex analysis ; Convex functions ; Convex optimization ; Dynamic programming ; Electric power generation ; Energy management ; Engines ; Hybrid vehicles ; Mathematical model ; Mathematical models ; Optimization ; sizing ; Thresholds ; Vehicles</subject><ispartof>IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3549-3559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</citedby><cites>FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6730692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/195408$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Elbert, Philipp</creatorcontrib><creatorcontrib>Nuesch, Tobias</creatorcontrib><creatorcontrib>Ritter, Andreas</creatorcontrib><creatorcontrib>Murgovski, Nikolce</creatorcontrib><creatorcontrib>Guzzella, Lino</creatorcontrib><title>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm.</description><subject>Algorithms</subject><subject>Approximation methods</subject><subject>Batteries</subject><subject>Convex analysis</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>Dynamic programming</subject><subject>Electric power generation</subject><subject>Energy management</subject><subject>Engines</subject><subject>Hybrid vehicles</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>sizing</subject><subject>Thresholds</subject><subject>Vehicles</subject><issn>0018-9545</issn><issn>1939-9359</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxZfQQty090Ivgl56WUdafa2OrXGbQooPcXIVWu3IVtiVXGk3qfvXV8Yhh15mGPi9xxteVX0keEkIVtfbh-2ywYQtG4oZofKiWhBFVa0oV2-qBcakrRVn_LJ6l_NjORlTZFHt1mHnA6BNuN44h1YxTCkOyMWEpj2gdYC0O6JfJpgdjBAmFB0y6A6SNwO6OXbJ92g9gJ2St-jbnNGTNyeXJ_iDNofJj_6vmXwM76u3zgwZPrzsq-r--3q7uqlvNz9-rr7e1pZhPNWdVH1PuOywlKRh1rIGjGiYkw6D4C3juAMqCuxIJzorGW4d6zFw6gi0ll5Vd2ff_AyHudOH5EeTjjoarxNkMMnutd2bYYSUdQYteqyAGqaFVaBZa6VWrWRlgCEtA-gMKa5fzq6HFH_PkCc9-mxhGEyAOGdNhCyhlaBNQT__hz7GOYXyc6EIa7gkmBcKnymbYs4J3GtQgvWpT1361Kc-9UufRfLpLPEA8IoLSbFQDf0HU42a9w</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Elbert, Philipp</creator><creator>Nuesch, Tobias</creator><creator>Ritter, Andreas</creator><creator>Murgovski, Nikolce</creator><creator>Guzzella, Lino</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope></search><sort><creationdate>20141001</creationdate><title>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</title><author>Elbert, Philipp ; Nuesch, Tobias ; Ritter, Andreas ; Murgovski, Nikolce ; Guzzella, Lino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation methods</topic><topic>Batteries</topic><topic>Convex analysis</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>Dynamic programming</topic><topic>Electric power generation</topic><topic>Energy management</topic><topic>Engines</topic><topic>Hybrid vehicles</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>sizing</topic><topic>Thresholds</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbert, Philipp</creatorcontrib><creatorcontrib>Nuesch, Tobias</creatorcontrib><creatorcontrib>Ritter, Andreas</creatorcontrib><creatorcontrib>Murgovski, Nikolce</creatorcontrib><creatorcontrib>Guzzella, Lino</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbert, Philipp</au><au>Nuesch, Tobias</au><au>Ritter, Andreas</au><au>Murgovski, Nikolce</au><au>Guzzella, Lino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>63</volume><issue>8</issue><spage>3549</spage><epage>3559</epage><pages>3549-3559</pages><issn>0018-9545</issn><issn>1939-9359</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2014.2304137</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3549-3559 |
issn | 0018-9545 1939-9359 1939-9359 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVT_2014_2304137 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Approximation methods Batteries Convex analysis Convex functions Convex optimization Dynamic programming Electric power generation Energy management Engines Hybrid vehicles Mathematical model Mathematical models Optimization sizing Thresholds Vehicles |
title | Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engine%20On/Off%20Control%20for%20the%20Energy%20Management%20of%20a%20Serial%20Hybrid%20Electric%20Bus%20via%20Convex%20Optimization&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Elbert,%20Philipp&rft.date=2014-10-01&rft.volume=63&rft.issue=8&rft.spage=3549&rft.epage=3559&rft.pages=3549-3559&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2014.2304137&rft_dat=%3Cproquest_cross%3E1671579632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614257105&rft_id=info:pmid/&rft_ieee_id=6730692&rfr_iscdi=true |