Loading…

Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization

Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2014-10, Vol.63 (8), p.3549-3559
Main Authors: Elbert, Philipp, Nuesch, Tobias, Ritter, Andreas, Murgovski, Nikolce, Guzzella, Lino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3
cites cdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3
container_end_page 3559
container_issue 8
container_start_page 3549
container_title IEEE transactions on vehicular technology
container_volume 63
creator Elbert, Philipp
Nuesch, Tobias
Ritter, Andreas
Murgovski, Nikolce
Guzzella, Lino
description Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm.
doi_str_mv 10.1109/TVT.2014.2304137
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2014_2304137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6730692</ieee_id><sourcerecordid>1671579632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxZfQQty090Ivgl56WUdafa2OrXGbQooPcXIVWu3IVtiVXGk3qfvXV8Yhh15mGPi9xxteVX0keEkIVtfbh-2ywYQtG4oZofKiWhBFVa0oV2-qBcakrRVn_LJ6l_NjORlTZFHt1mHnA6BNuN44h1YxTCkOyMWEpj2gdYC0O6JfJpgdjBAmFB0y6A6SNwO6OXbJ92g9gJ2St-jbnNGTNyeXJ_iDNofJj_6vmXwM76u3zgwZPrzsq-r--3q7uqlvNz9-rr7e1pZhPNWdVH1PuOywlKRh1rIGjGiYkw6D4C3juAMqCuxIJzorGW4d6zFw6gi0ll5Vd2ff_AyHudOH5EeTjjoarxNkMMnutd2bYYSUdQYteqyAGqaFVaBZa6VWrWRlgCEtA-gMKa5fzq6HFH_PkCc9-mxhGEyAOGdNhCyhlaBNQT__hz7GOYXyc6EIa7gkmBcKnymbYs4J3GtQgvWpT1361Kc-9UufRfLpLPEA8IoLSbFQDf0HU42a9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614257105</pqid></control><display><type>article</type><title>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Elbert, Philipp ; Nuesch, Tobias ; Ritter, Andreas ; Murgovski, Nikolce ; Guzzella, Lino</creator><creatorcontrib>Elbert, Philipp ; Nuesch, Tobias ; Ritter, Andreas ; Murgovski, Nikolce ; Guzzella, Lino</creatorcontrib><description>Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm.</description><identifier>ISSN: 0018-9545</identifier><identifier>ISSN: 1939-9359</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2014.2304137</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation methods ; Batteries ; Convex analysis ; Convex functions ; Convex optimization ; Dynamic programming ; Electric power generation ; Energy management ; Engines ; Hybrid vehicles ; Mathematical model ; Mathematical models ; Optimization ; sizing ; Thresholds ; Vehicles</subject><ispartof>IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3549-3559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</citedby><cites>FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6730692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/195408$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Elbert, Philipp</creatorcontrib><creatorcontrib>Nuesch, Tobias</creatorcontrib><creatorcontrib>Ritter, Andreas</creatorcontrib><creatorcontrib>Murgovski, Nikolce</creatorcontrib><creatorcontrib>Guzzella, Lino</creatorcontrib><title>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm.</description><subject>Algorithms</subject><subject>Approximation methods</subject><subject>Batteries</subject><subject>Convex analysis</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>Dynamic programming</subject><subject>Electric power generation</subject><subject>Energy management</subject><subject>Engines</subject><subject>Hybrid vehicles</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>sizing</subject><subject>Thresholds</subject><subject>Vehicles</subject><issn>0018-9545</issn><issn>1939-9359</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxZfQQty090Ivgl56WUdafa2OrXGbQooPcXIVWu3IVtiVXGk3qfvXV8Yhh15mGPi9xxteVX0keEkIVtfbh-2ywYQtG4oZofKiWhBFVa0oV2-qBcakrRVn_LJ6l_NjORlTZFHt1mHnA6BNuN44h1YxTCkOyMWEpj2gdYC0O6JfJpgdjBAmFB0y6A6SNwO6OXbJ92g9gJ2St-jbnNGTNyeXJ_iDNofJj_6vmXwM76u3zgwZPrzsq-r--3q7uqlvNz9-rr7e1pZhPNWdVH1PuOywlKRh1rIGjGiYkw6D4C3juAMqCuxIJzorGW4d6zFw6gi0ll5Vd2ff_AyHudOH5EeTjjoarxNkMMnutd2bYYSUdQYteqyAGqaFVaBZa6VWrWRlgCEtA-gMKa5fzq6HFH_PkCc9-mxhGEyAOGdNhCyhlaBNQT__hz7GOYXyc6EIa7gkmBcKnymbYs4J3GtQgvWpT1361Kc-9UufRfLpLPEA8IoLSbFQDf0HU42a9w</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Elbert, Philipp</creator><creator>Nuesch, Tobias</creator><creator>Ritter, Andreas</creator><creator>Murgovski, Nikolce</creator><creator>Guzzella, Lino</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope></search><sort><creationdate>20141001</creationdate><title>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</title><author>Elbert, Philipp ; Nuesch, Tobias ; Ritter, Andreas ; Murgovski, Nikolce ; Guzzella, Lino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation methods</topic><topic>Batteries</topic><topic>Convex analysis</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>Dynamic programming</topic><topic>Electric power generation</topic><topic>Energy management</topic><topic>Engines</topic><topic>Hybrid vehicles</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>sizing</topic><topic>Thresholds</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbert, Philipp</creatorcontrib><creatorcontrib>Nuesch, Tobias</creatorcontrib><creatorcontrib>Ritter, Andreas</creatorcontrib><creatorcontrib>Murgovski, Nikolce</creatorcontrib><creatorcontrib>Guzzella, Lino</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbert, Philipp</au><au>Nuesch, Tobias</au><au>Ritter, Andreas</au><au>Murgovski, Nikolce</au><au>Guzzella, Lino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>63</volume><issue>8</issue><spage>3549</spage><epage>3559</epage><pages>3549-3559</pages><issn>0018-9545</issn><issn>1939-9359</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Convex optimization has recently been suggested for solving the optimal energy management problem of hybrid electric vehicles. Compared with dynamic programming, this approach can significantly reduce the computational time, but the price to pay is additional model approximations and heuristics for discrete decision variables such as engine on/off control. In this paper, the globally optimal engine on/off conditions are derived analytically. It is demonstrated that the optimal engine on/off strategy is to switch the engine on if and only if the requested power exceeds a certain nonconstant threshold. By iteratively computing the threshold and the power split using convex optimization, the optimal solution to the energy management problem is found. The effectiveness of the presented approach is demonstrated in two sizing case studies. The first case study deals with high-energy-capacity batteries, whereas the second case study deals with supercapacitors that have much lower energy capacity. In both cases, the proposed algorithm yields optimal results much faster than the dynamic programming algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2014.2304137</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3549-3559
issn 0018-9545
1939-9359
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2014_2304137
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Approximation methods
Batteries
Convex analysis
Convex functions
Convex optimization
Dynamic programming
Electric power generation
Energy management
Engines
Hybrid vehicles
Mathematical model
Mathematical models
Optimization
sizing
Thresholds
Vehicles
title Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engine%20On/Off%20Control%20for%20the%20Energy%20Management%20of%20a%20Serial%20Hybrid%20Electric%20Bus%20via%20Convex%20Optimization&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Elbert,%20Philipp&rft.date=2014-10-01&rft.volume=63&rft.issue=8&rft.spage=3549&rft.epage=3559&rft.pages=3549-3559&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2014.2304137&rft_dat=%3Cproquest_cross%3E1671579632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-b79dd157b077124cc42ea624f7f0e658450be36c40f1b6bc7408f4d0e53f1e8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614257105&rft_id=info:pmid/&rft_ieee_id=6730692&rfr_iscdi=true