Loading…

UAV-Enabled Wireless Power Transfer With Base Station Charging and UAV Power Consumption

Wireless power transfer (WPT) is a promising charging technology for battery-limited sensors. In this paper, we study the use of an unmanned aerial vehicle (UAV) as a charger for WPT. Unlike the previous works, our study takes into account the power consumption of the UAV (power consumption during h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2020-11, Vol.69 (11), p.12883-12896
Main Authors: Yan, Hua, Chen, Yunfei, Yang, Shuang-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wireless power transfer (WPT) is a promising charging technology for battery-limited sensors. In this paper, we study the use of an unmanned aerial vehicle (UAV) as a charger for WPT. Unlike the previous works, our study takes into account the power consumption of the UAV (power consumption during hovering and flight), the charging process from a base station (BS) to the UAV and the conversion loss of the energy harvester. Both one-dimensional (1D) and two-dimensional (2D) WPT systems are considered. The sum-energy received by all sensors is maximized to find the optimal strategy for UAV deployment. Two different charging schemes are proposed. Numerical results show that the sum-energy received by all sensors is determined by sensors' topology, the flight speed of the UAV and the transmit power. They also show that, when the BS charging process and the UAV power consumption are considered in the optimization, the optimal location of the UAV in the 1D and 2D WPT systems is closer to the BS than in the previous works that ignore these two practical factors.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2020.3015246