Loading…
Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach
We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optim...
Saved in:
Published in: | IEEE transactions on vehicular technology 2021-04, Vol.70 (4), p.3978-3983 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optimization problem with the objective of minimizing the expected sum Age-of-Information (AoI) is formulated to optimize the altitude of the UAV, the communication schedule, and phases-shift of RIS elements. In the absence of prior knowledge of the activation pattern of the IoTDs, proximal policy optimization algorithm is developed to solve this mixed-integer non-convex optimization problem. Numerical results show that our proposed algorithm outperforms all others in terms of AoI. |
---|---|
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2021.3063953 |