Loading…

A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input

Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollut...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2022-06, Vol.71 (6), p.6119-6130
Main Authors: Xue, Zhongjin, Cheng, Shuo, Li, Liang, Zhong, Zhihua, Mu, Hongyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013
cites cdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013
container_end_page 6130
container_issue 6
container_start_page 6119
container_title IEEE transactions on vehicular technology
container_volume 71
creator Xue, Zhongjin
Cheng, Shuo
Li, Liang
Zhong, Zhihua
Mu, Hongyuan
description Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm.
doi_str_mv 10.1109/TVT.2022.3163207
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2022_3163207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9744542</ieee_id><sourcerecordid>2680396721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWKt3wUvA89Yks9ltjrW0WqgI2taLELKbWbq17tYki_jvTWnR0zDD997MPEKuORtwztTdYrUYCCbEAHgGguUnpMcVqESBVKekxxgfJkqm8pxceL-JbZoq3iPvI_rSFp0PdNn4EpuAlj4lEx_qTxPqtknujY-jab0N6GjVOrrCdV1ukb4GE5D-k_StDuvo8tG03w2dNbsuXJKzymw9Xh1rnyynk8X4MZk_P8zGo3lSCsVDgkbYPLOZySUYkWKmlCykwkpayQGAgxwiFLYsARB5_BJzq7AwERWWceiT24PvzrVfHfqgN23nmrhSi2zIQGW52FPsQJWu9d5hpXcu3u5-NGd6n6GOGep9hvqYYZTcHCQ1Iv7hKk9TmQr4BbYBbPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680396721</pqid></control><display><type>article</type><title>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xue, Zhongjin ; Cheng, Shuo ; Li, Liang ; Zhong, Zhihua ; Mu, Hongyuan</creator><creatorcontrib>Xue, Zhongjin ; Cheng, Shuo ; Li, Liang ; Zhong, Zhihua ; Mu, Hongyuan</creatorcontrib><description>Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2022.3163207</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Dynamical systems ; Extended Kalman filter ; Measuring instruments ; Noise pollution ; Nonlinear dynamics ; Nonlinear systems ; Outliers (statistics) ; Redundancy ; robust unscented filter ; Robustness ; Safety ; Sensors ; State estimation ; Statistical analysis ; Steering ; Tires ; Torque ; torque estimation ; unknown input estimation ; Vehicle dynamics ; Vehicle state estimation ; Vehicles ; Wheels</subject><ispartof>IEEE transactions on vehicular technology, 2022-06, Vol.71 (6), p.6119-6130</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</citedby><cites>FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</cites><orcidid>0000-0002-1577-408X ; 0000-0002-5410-9170 ; 0000-0002-9658-7090 ; 0000-0003-1779-3468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9744542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Xue, Zhongjin</creatorcontrib><creatorcontrib>Cheng, Shuo</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Zhong, Zhihua</creatorcontrib><creatorcontrib>Mu, Hongyuan</creatorcontrib><title>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Extended Kalman filter</subject><subject>Measuring instruments</subject><subject>Noise pollution</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Outliers (statistics)</subject><subject>Redundancy</subject><subject>robust unscented filter</subject><subject>Robustness</subject><subject>Safety</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Statistical analysis</subject><subject>Steering</subject><subject>Tires</subject><subject>Torque</subject><subject>torque estimation</subject><subject>unknown input estimation</subject><subject>Vehicle dynamics</subject><subject>Vehicle state estimation</subject><subject>Vehicles</subject><subject>Wheels</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWKt3wUvA89Yks9ltjrW0WqgI2taLELKbWbq17tYki_jvTWnR0zDD997MPEKuORtwztTdYrUYCCbEAHgGguUnpMcVqESBVKekxxgfJkqm8pxceL-JbZoq3iPvI_rSFp0PdNn4EpuAlj4lEx_qTxPqtknujY-jab0N6GjVOrrCdV1ukb4GE5D-k_StDuvo8tG03w2dNbsuXJKzymw9Xh1rnyynk8X4MZk_P8zGo3lSCsVDgkbYPLOZySUYkWKmlCykwkpayQGAgxwiFLYsARB5_BJzq7AwERWWceiT24PvzrVfHfqgN23nmrhSi2zIQGW52FPsQJWu9d5hpXcu3u5-NGd6n6GOGep9hvqYYZTcHCQ1Iv7hKk9TmQr4BbYBbPI</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Xue, Zhongjin</creator><creator>Cheng, Shuo</creator><creator>Li, Liang</creator><creator>Zhong, Zhihua</creator><creator>Mu, Hongyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0002-5410-9170</orcidid><orcidid>https://orcid.org/0000-0002-9658-7090</orcidid><orcidid>https://orcid.org/0000-0003-1779-3468</orcidid></search><sort><creationdate>20220601</creationdate><title>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</title><author>Xue, Zhongjin ; Cheng, Shuo ; Li, Liang ; Zhong, Zhihua ; Mu, Hongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Extended Kalman filter</topic><topic>Measuring instruments</topic><topic>Noise pollution</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Outliers (statistics)</topic><topic>Redundancy</topic><topic>robust unscented filter</topic><topic>Robustness</topic><topic>Safety</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Statistical analysis</topic><topic>Steering</topic><topic>Tires</topic><topic>Torque</topic><topic>torque estimation</topic><topic>unknown input estimation</topic><topic>Vehicle dynamics</topic><topic>Vehicle state estimation</topic><topic>Vehicles</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhongjin</creatorcontrib><creatorcontrib>Cheng, Shuo</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Zhong, Zhihua</creatorcontrib><creatorcontrib>Mu, Hongyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Zhongjin</au><au>Cheng, Shuo</au><au>Li, Liang</au><au>Zhong, Zhihua</au><au>Mu, Hongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>71</volume><issue>6</issue><spage>6119</spage><epage>6130</epage><pages>6119-6130</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2022.3163207</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0002-5410-9170</orcidid><orcidid>https://orcid.org/0000-0002-9658-7090</orcidid><orcidid>https://orcid.org/0000-0003-1779-3468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2022-06, Vol.71 (6), p.6119-6130
issn 0018-9545
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2022_3163207
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Dynamical systems
Extended Kalman filter
Measuring instruments
Noise pollution
Nonlinear dynamics
Nonlinear systems
Outliers (statistics)
Redundancy
robust unscented filter
Robustness
Safety
Sensors
State estimation
Statistical analysis
Steering
Tires
Torque
torque estimation
unknown input estimation
Vehicle dynamics
Vehicle state estimation
Vehicles
Wheels
title A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Unscented%20M-Estimation-Based%20Filter%20for%20Vehicle%20State%20Estimation%20With%20Unknown%20Input&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Xue,%20Zhongjin&rft.date=2022-06-01&rft.volume=71&rft.issue=6&rft.spage=6119&rft.epage=6130&rft.pages=6119-6130&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2022.3163207&rft_dat=%3Cproquest_cross%3E2680396721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680396721&rft_id=info:pmid/&rft_ieee_id=9744542&rfr_iscdi=true