Loading…
A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input
Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollut...
Saved in:
Published in: | IEEE transactions on vehicular technology 2022-06, Vol.71 (6), p.6119-6130 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013 |
container_end_page | 6130 |
container_issue | 6 |
container_start_page | 6119 |
container_title | IEEE transactions on vehicular technology |
container_volume | 71 |
creator | Xue, Zhongjin Cheng, Shuo Li, Liang Zhong, Zhihua Mu, Hongyuan |
description | Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm. |
doi_str_mv | 10.1109/TVT.2022.3163207 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2022_3163207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9744542</ieee_id><sourcerecordid>2680396721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWKt3wUvA89Yks9ltjrW0WqgI2taLELKbWbq17tYki_jvTWnR0zDD997MPEKuORtwztTdYrUYCCbEAHgGguUnpMcVqESBVKekxxgfJkqm8pxceL-JbZoq3iPvI_rSFp0PdNn4EpuAlj4lEx_qTxPqtknujY-jab0N6GjVOrrCdV1ukb4GE5D-k_StDuvo8tG03w2dNbsuXJKzymw9Xh1rnyynk8X4MZk_P8zGo3lSCsVDgkbYPLOZySUYkWKmlCykwkpayQGAgxwiFLYsARB5_BJzq7AwERWWceiT24PvzrVfHfqgN23nmrhSi2zIQGW52FPsQJWu9d5hpXcu3u5-NGd6n6GOGep9hvqYYZTcHCQ1Iv7hKk9TmQr4BbYBbPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680396721</pqid></control><display><type>article</type><title>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xue, Zhongjin ; Cheng, Shuo ; Li, Liang ; Zhong, Zhihua ; Mu, Hongyuan</creator><creatorcontrib>Xue, Zhongjin ; Cheng, Shuo ; Li, Liang ; Zhong, Zhihua ; Mu, Hongyuan</creatorcontrib><description>Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2022.3163207</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Dynamical systems ; Extended Kalman filter ; Measuring instruments ; Noise pollution ; Nonlinear dynamics ; Nonlinear systems ; Outliers (statistics) ; Redundancy ; robust unscented filter ; Robustness ; Safety ; Sensors ; State estimation ; Statistical analysis ; Steering ; Tires ; Torque ; torque estimation ; unknown input estimation ; Vehicle dynamics ; Vehicle state estimation ; Vehicles ; Wheels</subject><ispartof>IEEE transactions on vehicular technology, 2022-06, Vol.71 (6), p.6119-6130</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</citedby><cites>FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</cites><orcidid>0000-0002-1577-408X ; 0000-0002-5410-9170 ; 0000-0002-9658-7090 ; 0000-0003-1779-3468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9744542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Xue, Zhongjin</creatorcontrib><creatorcontrib>Cheng, Shuo</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Zhong, Zhihua</creatorcontrib><creatorcontrib>Mu, Hongyuan</creatorcontrib><title>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Extended Kalman filter</subject><subject>Measuring instruments</subject><subject>Noise pollution</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Outliers (statistics)</subject><subject>Redundancy</subject><subject>robust unscented filter</subject><subject>Robustness</subject><subject>Safety</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Statistical analysis</subject><subject>Steering</subject><subject>Tires</subject><subject>Torque</subject><subject>torque estimation</subject><subject>unknown input estimation</subject><subject>Vehicle dynamics</subject><subject>Vehicle state estimation</subject><subject>Vehicles</subject><subject>Wheels</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWKt3wUvA89Yks9ltjrW0WqgI2taLELKbWbq17tYki_jvTWnR0zDD997MPEKuORtwztTdYrUYCCbEAHgGguUnpMcVqESBVKekxxgfJkqm8pxceL-JbZoq3iPvI_rSFp0PdNn4EpuAlj4lEx_qTxPqtknujY-jab0N6GjVOrrCdV1ukb4GE5D-k_StDuvo8tG03w2dNbsuXJKzymw9Xh1rnyynk8X4MZk_P8zGo3lSCsVDgkbYPLOZySUYkWKmlCykwkpayQGAgxwiFLYsARB5_BJzq7AwERWWceiT24PvzrVfHfqgN23nmrhSi2zIQGW52FPsQJWu9d5hpXcu3u5-NGd6n6GOGep9hvqYYZTcHCQ1Iv7hKk9TmQr4BbYBbPI</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Xue, Zhongjin</creator><creator>Cheng, Shuo</creator><creator>Li, Liang</creator><creator>Zhong, Zhihua</creator><creator>Mu, Hongyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0002-5410-9170</orcidid><orcidid>https://orcid.org/0000-0002-9658-7090</orcidid><orcidid>https://orcid.org/0000-0003-1779-3468</orcidid></search><sort><creationdate>20220601</creationdate><title>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</title><author>Xue, Zhongjin ; Cheng, Shuo ; Li, Liang ; Zhong, Zhihua ; Mu, Hongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Extended Kalman filter</topic><topic>Measuring instruments</topic><topic>Noise pollution</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Outliers (statistics)</topic><topic>Redundancy</topic><topic>robust unscented filter</topic><topic>Robustness</topic><topic>Safety</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Statistical analysis</topic><topic>Steering</topic><topic>Tires</topic><topic>Torque</topic><topic>torque estimation</topic><topic>unknown input estimation</topic><topic>Vehicle dynamics</topic><topic>Vehicle state estimation</topic><topic>Vehicles</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhongjin</creatorcontrib><creatorcontrib>Cheng, Shuo</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Zhong, Zhihua</creatorcontrib><creatorcontrib>Mu, Hongyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Zhongjin</au><au>Cheng, Shuo</au><au>Li, Liang</au><au>Zhong, Zhihua</au><au>Mu, Hongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>71</volume><issue>6</issue><spage>6119</spage><epage>6130</epage><pages>6119-6130</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Longitudinal velocity, lateral velocity, and front wheel steering angle are crucial states for vehicle active safety features. However, direct measurement of these variables requires expensive measurement instruments and can be easily affected by vehicle nonlinear dynamics, outliers and noise pollution. Moreover, unknown inputs bring great challenges to their accurate estimation. Therefore, this paper develops a novel robust unscented M-estimation-based filter (RUMF) for vehicle state estimation with unknown driver steering torque. The nonlinear system model is constructed based on the vehicle dynamics model. Unscented transformation (UT) and statistical linearization are implemented to transform the nonlinear process and measurement function into a linear-like regression form with data redundancy to achieve outlier suppression. Then, an M-estimation-based iterated algorithm is designed to address process uncertainty and innovation and observation outliers for robust vehicle state estimation. The iteratively reweighted least-squares (IRLS) method based on the M-estimation methodology is utilized for unknown input estimation. Simulations and experimental results compared with extended Kalman filter (EKF) and particle filter (PF) have verified the effectiveness and robustness of the proposed algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2022.3163207</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0002-5410-9170</orcidid><orcidid>https://orcid.org/0000-0002-9658-7090</orcidid><orcidid>https://orcid.org/0000-0003-1779-3468</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2022-06, Vol.71 (6), p.6119-6130 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVT_2022_3163207 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Dynamical systems Extended Kalman filter Measuring instruments Noise pollution Nonlinear dynamics Nonlinear systems Outliers (statistics) Redundancy robust unscented filter Robustness Safety Sensors State estimation Statistical analysis Steering Tires Torque torque estimation unknown input estimation Vehicle dynamics Vehicle state estimation Vehicles Wheels |
title | A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Unscented%20M-Estimation-Based%20Filter%20for%20Vehicle%20State%20Estimation%20With%20Unknown%20Input&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Xue,%20Zhongjin&rft.date=2022-06-01&rft.volume=71&rft.issue=6&rft.spage=6119&rft.epage=6130&rft.pages=6119-6130&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2022.3163207&rft_dat=%3Cproquest_cross%3E2680396721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ea2d76d6a753a24e6995b59ef5d513331358e3bdcc33ee1202e7d9eba4e62d013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680396721&rft_id=info:pmid/&rft_ieee_id=9744542&rfr_iscdi=true |