Loading…
DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones
The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor position...
Saved in:
Published in: | IEEE transactions on vehicular technology 2022-12, Vol.71 (12), p.13299-13309 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13 |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13 |
container_end_page | 13309 |
container_issue | 12 |
container_start_page | 13299 |
container_title | IEEE transactions on vehicular technology |
container_volume | 71 |
creator | Zhou, Baoding Gu, Zhining Gu, Fuqiang Wu, Peng Yang, Chengjing Liu, Xu Li, Linchao Li, Yan Li, Qingquan |
description | The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods. |
doi_str_mv | 10.1109/TVT.2022.3199507 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2022_3199507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9860093</ieee_id><sourcerecordid>2754957811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_Uiy3rT1I1CwYNvrstnO2pSajbvpwf_ehBYvM2_g92aGR8gt0AkAVQ_L9XLCKGMTDkpJmp-RESiuUsWlOicjSqFIlRTyklzFuOtHIRSMSDlDbNfl4jEZRDJHE5q6-UqfTcRNssZtbfeYlM3G-5AsfKy72g9AsopD_fw2oWu3vsF4TS6c2Ue8OfUxWb2-LKfv6fzjrZw-zVPLGHSpEMJiRblxzgqb52ArcIV0sOFUZJJbzgqQRjEmCzCYoeuVrbK8ojmvEPiY3B_3tsH_HDB2eucPoelPapZLoWRewEDRI2WDjzGg022o-2d_NVA9BKb7wPQQmD4F1lvujpYaEf9xVWSUKs7_AEefZbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754957811</pqid></control><display><type>article</type><title>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</title><source>IEEE Xplore (Online service)</source><creator>Zhou, Baoding ; Gu, Zhining ; Gu, Fuqiang ; Wu, Peng ; Yang, Chengjing ; Liu, Xu ; Li, Linchao ; Li, Yan ; Li, Qingquan</creator><creatorcontrib>Zhou, Baoding ; Gu, Zhining ; Gu, Fuqiang ; Wu, Peng ; Yang, Chengjing ; Liu, Xu ; Li, Linchao ; Li, Yan ; Li, Qingquan</creatorcontrib><description>The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2022.3199507</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Autonomous cars ; Data-driven inertial navigation ; Deep learning ; deep neural networks ; Electronic devices ; Equipment costs ; indoor localization ; Inertial navigation ; Inertial sensing devices ; Location awareness ; Navigation ; Parking ; Sensors ; Smart cars ; Smart phones ; smartphone sensors ; Smartphones ; Wireless fidelity</subject><ispartof>IEEE transactions on vehicular technology, 2022-12, Vol.71 (12), p.13299-13309</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</citedby><cites>FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</cites><orcidid>0000-0003-4461-8884 ; 0000-0003-1607-2626 ; 0000-0002-3408-982X ; 0000-0002-2574-0174 ; 0000-0002-2438-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9860093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Gu, Zhining</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Chengjing</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Li, Linchao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><title>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods.</description><subject>Accelerometers</subject><subject>Autonomous cars</subject><subject>Data-driven inertial navigation</subject><subject>Deep learning</subject><subject>deep neural networks</subject><subject>Electronic devices</subject><subject>Equipment costs</subject><subject>indoor localization</subject><subject>Inertial navigation</subject><subject>Inertial sensing devices</subject><subject>Location awareness</subject><subject>Navigation</subject><subject>Parking</subject><subject>Sensors</subject><subject>Smart cars</subject><subject>Smart phones</subject><subject>smartphone sensors</subject><subject>Smartphones</subject><subject>Wireless fidelity</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_Uiy3rT1I1CwYNvrstnO2pSajbvpwf_ehBYvM2_g92aGR8gt0AkAVQ_L9XLCKGMTDkpJmp-RESiuUsWlOicjSqFIlRTyklzFuOtHIRSMSDlDbNfl4jEZRDJHE5q6-UqfTcRNssZtbfeYlM3G-5AsfKy72g9AsopD_fw2oWu3vsF4TS6c2Ue8OfUxWb2-LKfv6fzjrZw-zVPLGHSpEMJiRblxzgqb52ArcIV0sOFUZJJbzgqQRjEmCzCYoeuVrbK8ojmvEPiY3B_3tsH_HDB2eucPoelPapZLoWRewEDRI2WDjzGg022o-2d_NVA9BKb7wPQQmD4F1lvujpYaEf9xVWSUKs7_AEefZbs</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhou, Baoding</creator><creator>Gu, Zhining</creator><creator>Gu, Fuqiang</creator><creator>Wu, Peng</creator><creator>Yang, Chengjing</creator><creator>Liu, Xu</creator><creator>Li, Linchao</creator><creator>Li, Yan</creator><creator>Li, Qingquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4461-8884</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0002-2574-0174</orcidid><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid></search><sort><creationdate>20221201</creationdate><title>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</title><author>Zhou, Baoding ; Gu, Zhining ; Gu, Fuqiang ; Wu, Peng ; Yang, Chengjing ; Liu, Xu ; Li, Linchao ; Li, Yan ; Li, Qingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Autonomous cars</topic><topic>Data-driven inertial navigation</topic><topic>Deep learning</topic><topic>deep neural networks</topic><topic>Electronic devices</topic><topic>Equipment costs</topic><topic>indoor localization</topic><topic>Inertial navigation</topic><topic>Inertial sensing devices</topic><topic>Location awareness</topic><topic>Navigation</topic><topic>Parking</topic><topic>Sensors</topic><topic>Smart cars</topic><topic>Smart phones</topic><topic>smartphone sensors</topic><topic>Smartphones</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Gu, Zhining</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Chengjing</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Li, Linchao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Baoding</au><au>Gu, Zhining</au><au>Gu, Fuqiang</au><au>Wu, Peng</au><au>Yang, Chengjing</au><au>Liu, Xu</au><au>Li, Linchao</au><au>Li, Yan</au><au>Li, Qingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>71</volume><issue>12</issue><spage>13299</spage><epage>13309</epage><pages>13299-13309</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2022.3199507</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4461-8884</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0002-2574-0174</orcidid><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2022-12, Vol.71 (12), p.13299-13309 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVT_2022_3199507 |
source | IEEE Xplore (Online service) |
subjects | Accelerometers Autonomous cars Data-driven inertial navigation Deep learning deep neural networks Electronic devices Equipment costs indoor localization Inertial navigation Inertial sensing devices Location awareness Navigation Parking Sensors Smart cars Smart phones smartphone sensors Smartphones Wireless fidelity |
title | DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepVIP:%20Deep%20Learning-Based%20Vehicle%20Indoor%20Positioning%20Using%20Smartphones&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Zhou,%20Baoding&rft.date=2022-12-01&rft.volume=71&rft.issue=12&rft.spage=13299&rft.epage=13309&rft.pages=13299-13309&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2022.3199507&rft_dat=%3Cproquest_cross%3E2754957811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754957811&rft_id=info:pmid/&rft_ieee_id=9860093&rfr_iscdi=true |