Loading…

DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones

The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor position...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2022-12, Vol.71 (12), p.13299-13309
Main Authors: Zhou, Baoding, Gu, Zhining, Gu, Fuqiang, Wu, Peng, Yang, Chengjing, Liu, Xu, Li, Linchao, Li, Yan, Li, Qingquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13
cites cdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13
container_end_page 13309
container_issue 12
container_start_page 13299
container_title IEEE transactions on vehicular technology
container_volume 71
creator Zhou, Baoding
Gu, Zhining
Gu, Fuqiang
Wu, Peng
Yang, Chengjing
Liu, Xu
Li, Linchao
Li, Yan
Li, Qingquan
description The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods.
doi_str_mv 10.1109/TVT.2022.3199507
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2022_3199507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9860093</ieee_id><sourcerecordid>2754957811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_Uiy3rT1I1CwYNvrstnO2pSajbvpwf_ehBYvM2_g92aGR8gt0AkAVQ_L9XLCKGMTDkpJmp-RESiuUsWlOicjSqFIlRTyklzFuOtHIRSMSDlDbNfl4jEZRDJHE5q6-UqfTcRNssZtbfeYlM3G-5AsfKy72g9AsopD_fw2oWu3vsF4TS6c2Ue8OfUxWb2-LKfv6fzjrZw-zVPLGHSpEMJiRblxzgqb52ArcIV0sOFUZJJbzgqQRjEmCzCYoeuVrbK8ojmvEPiY3B_3tsH_HDB2eucPoelPapZLoWRewEDRI2WDjzGg022o-2d_NVA9BKb7wPQQmD4F1lvujpYaEf9xVWSUKs7_AEefZbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754957811</pqid></control><display><type>article</type><title>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</title><source>IEEE Xplore (Online service)</source><creator>Zhou, Baoding ; Gu, Zhining ; Gu, Fuqiang ; Wu, Peng ; Yang, Chengjing ; Liu, Xu ; Li, Linchao ; Li, Yan ; Li, Qingquan</creator><creatorcontrib>Zhou, Baoding ; Gu, Zhining ; Gu, Fuqiang ; Wu, Peng ; Yang, Chengjing ; Liu, Xu ; Li, Linchao ; Li, Yan ; Li, Qingquan</creatorcontrib><description>The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2022.3199507</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Autonomous cars ; Data-driven inertial navigation ; Deep learning ; deep neural networks ; Electronic devices ; Equipment costs ; indoor localization ; Inertial navigation ; Inertial sensing devices ; Location awareness ; Navigation ; Parking ; Sensors ; Smart cars ; Smart phones ; smartphone sensors ; Smartphones ; Wireless fidelity</subject><ispartof>IEEE transactions on vehicular technology, 2022-12, Vol.71 (12), p.13299-13309</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</citedby><cites>FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</cites><orcidid>0000-0003-4461-8884 ; 0000-0003-1607-2626 ; 0000-0002-3408-982X ; 0000-0002-2574-0174 ; 0000-0002-2438-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9860093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Gu, Zhining</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Chengjing</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Li, Linchao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><title>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods.</description><subject>Accelerometers</subject><subject>Autonomous cars</subject><subject>Data-driven inertial navigation</subject><subject>Deep learning</subject><subject>deep neural networks</subject><subject>Electronic devices</subject><subject>Equipment costs</subject><subject>indoor localization</subject><subject>Inertial navigation</subject><subject>Inertial sensing devices</subject><subject>Location awareness</subject><subject>Navigation</subject><subject>Parking</subject><subject>Sensors</subject><subject>Smart cars</subject><subject>Smart phones</subject><subject>smartphone sensors</subject><subject>Smartphones</subject><subject>Wireless fidelity</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59Sd_Uiy3rT1I1CwYNvrstnO2pSajbvpwf_ehBYvM2_g92aGR8gt0AkAVQ_L9XLCKGMTDkpJmp-RESiuUsWlOicjSqFIlRTyklzFuOtHIRSMSDlDbNfl4jEZRDJHE5q6-UqfTcRNssZtbfeYlM3G-5AsfKy72g9AsopD_fw2oWu3vsF4TS6c2Ue8OfUxWb2-LKfv6fzjrZw-zVPLGHSpEMJiRblxzgqb52ArcIV0sOFUZJJbzgqQRjEmCzCYoeuVrbK8ojmvEPiY3B_3tsH_HDB2eucPoelPapZLoWRewEDRI2WDjzGg022o-2d_NVA9BKb7wPQQmD4F1lvujpYaEf9xVWSUKs7_AEefZbs</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhou, Baoding</creator><creator>Gu, Zhining</creator><creator>Gu, Fuqiang</creator><creator>Wu, Peng</creator><creator>Yang, Chengjing</creator><creator>Liu, Xu</creator><creator>Li, Linchao</creator><creator>Li, Yan</creator><creator>Li, Qingquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4461-8884</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0002-2574-0174</orcidid><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid></search><sort><creationdate>20221201</creationdate><title>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</title><author>Zhou, Baoding ; Gu, Zhining ; Gu, Fuqiang ; Wu, Peng ; Yang, Chengjing ; Liu, Xu ; Li, Linchao ; Li, Yan ; Li, Qingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Autonomous cars</topic><topic>Data-driven inertial navigation</topic><topic>Deep learning</topic><topic>deep neural networks</topic><topic>Electronic devices</topic><topic>Equipment costs</topic><topic>indoor localization</topic><topic>Inertial navigation</topic><topic>Inertial sensing devices</topic><topic>Location awareness</topic><topic>Navigation</topic><topic>Parking</topic><topic>Sensors</topic><topic>Smart cars</topic><topic>Smart phones</topic><topic>smartphone sensors</topic><topic>Smartphones</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Gu, Zhining</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Chengjing</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Li, Linchao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Baoding</au><au>Gu, Zhining</au><au>Gu, Fuqiang</au><au>Wu, Peng</au><au>Yang, Chengjing</au><au>Liu, Xu</au><au>Li, Linchao</au><au>Li, Yan</au><au>Li, Qingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>71</volume><issue>12</issue><spage>13299</spage><epage>13309</epage><pages>13299-13309</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The advent of sensor-rich smart devices (e.g., smartphones) has enabled a lot of applications and services. One of these applications and services is smartphone-based vehicle indoor positioning, which is a key technology for smart car parking and driverless cars. So far, most vehicle indoor positioning solutions either use infrastructures (e.g., WiFi access points) or inertial sensors, which suffer from low positioning accuracy, limited coverage, or high cost to deploy new equipment. To tackle these challenges, in this work we propose a novel Deep Learning-based Vehicle Indoor Positioning (DeepVIP) approach using smartphone built-in sensors, including accelerometer, gyroscope, magnetometer, and gravity sensor. Experiments are conducted in indoor parking areas. Experimental results show that the proposed method outperforms the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2022.3199507</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4461-8884</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0002-2574-0174</orcidid><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2022-12, Vol.71 (12), p.13299-13309
issn 0018-9545
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2022_3199507
source IEEE Xplore (Online service)
subjects Accelerometers
Autonomous cars
Data-driven inertial navigation
Deep learning
deep neural networks
Electronic devices
Equipment costs
indoor localization
Inertial navigation
Inertial sensing devices
Location awareness
Navigation
Parking
Sensors
Smart cars
Smart phones
smartphone sensors
Smartphones
Wireless fidelity
title DeepVIP: Deep Learning-Based Vehicle Indoor Positioning Using Smartphones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepVIP:%20Deep%20Learning-Based%20Vehicle%20Indoor%20Positioning%20Using%20Smartphones&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Zhou,%20Baoding&rft.date=2022-12-01&rft.volume=71&rft.issue=12&rft.spage=13299&rft.epage=13309&rft.pages=13299-13309&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2022.3199507&rft_dat=%3Cproquest_cross%3E2754957811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-444ceb03affc4c771cb1f85f1d304653c32815a922581ae6ef225cb67b073be13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754957811&rft_id=info:pmid/&rft_ieee_id=9860093&rfr_iscdi=true