Loading…
Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs
The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking p...
Saved in:
Published in: | IEEE transactions on vehicular technology 2024-01, Vol.73 (12), p.19464-19479 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 19479 |
container_issue | 12 |
container_start_page | 19464 |
container_title | IEEE transactions on vehicular technology |
container_volume | 73 |
creator | Xia, Yi Zhang, Zekai Xu, Jingzehua Ren, Pengfei Wang, Jingjing Han, Zhu |
description | The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least. |
doi_str_mv | 10.1109/TVT.2024.3437776 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2024_3437776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10621697</ieee_id><sourcerecordid>3147516636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c906-8e2b345e9eca71120b034107921fc272a019a0ebcf131bf0b24e8cd5f5b954853</originalsourceid><addsrcrecordid>eNpNkMtPwzAMxiMEEuNx58AhEueOOEnbhduYykMaQoKya5Smzuge7Ui6Q_97WrYDF1v299mWf4TcABsDMHWfL_IxZ1yOhRRpmiYnZARKqEiJWJ2SEWMwiVQs43NyEcKqL6VUMCJl1iGtatp-I_1cdw80q9EvO5o5V9kK65a-NSVuokcTsKQfWNWu8Ra3gzJH4-uqXtJpVfZibvwSW5p7Y9dD9yv8xekiXJEzZzYBr4_5kuRPWT57iebvz6-z6TyyiiXRBHkhZIwKrUkBOCuYkMBSxcFZnnLDQBmGhXUgoHCs4BIntoxdXPSPTWJxSe4Oa3e--dljaPWq2fu6v6gFyDSGJBFJ72IHl_VNCB6d3vlqa3yngekBpe5R6gGlPqLsR24PIxUi_rMnHBKVil-FLG5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147516636</pqid></control><display><type>article</type><title>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</title><source>IEEE Xplore (Online service)</source><creator>Xia, Yi ; Zhang, Zekai ; Xu, Jingzehua ; Ren, Pengfei ; Wang, Jingjing ; Han, Zhu</creator><creatorcontrib>Xia, Yi ; Zhang, Zekai ; Xu, Jingzehua ; Ren, Pengfei ; Wang, Jingjing ; Han, Zhu</creatorcontrib><description>The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2024.3437776</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Constraints ; Control systems design ; Convergence ; Cost effectiveness ; Costs ; Deep reinforcement learning ; Energy consumption ; mobile target tracking ; Reconnaissance aircraft ; Robust control ; Search and rescue missions ; Steady state models ; Target tracking ; time constraints ; Time factors ; Tracking ; UAV ; Unmanned aerial vehicles ; Vehicle dynamics</subject><ispartof>IEEE transactions on vehicular technology, 2024-01, Vol.73 (12), p.19464-19479</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6606-5822 ; 0000-0002-3254-9917 ; 0000-0003-3170-8952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10621697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zhang, Zekai</creatorcontrib><creatorcontrib>Xu, Jingzehua</creatorcontrib><creatorcontrib>Ren, Pengfei</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><title>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Constraints</subject><subject>Control systems design</subject><subject>Convergence</subject><subject>Cost effectiveness</subject><subject>Costs</subject><subject>Deep reinforcement learning</subject><subject>Energy consumption</subject><subject>mobile target tracking</subject><subject>Reconnaissance aircraft</subject><subject>Robust control</subject><subject>Search and rescue missions</subject><subject>Steady state models</subject><subject>Target tracking</subject><subject>time constraints</subject><subject>Time factors</subject><subject>Tracking</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicle dynamics</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtPwzAMxiMEEuNx58AhEueOOEnbhduYykMaQoKya5Smzuge7Ui6Q_97WrYDF1v299mWf4TcABsDMHWfL_IxZ1yOhRRpmiYnZARKqEiJWJ2SEWMwiVQs43NyEcKqL6VUMCJl1iGtatp-I_1cdw80q9EvO5o5V9kK65a-NSVuokcTsKQfWNWu8Ra3gzJH4-uqXtJpVfZibvwSW5p7Y9dD9yv8xekiXJEzZzYBr4_5kuRPWT57iebvz6-z6TyyiiXRBHkhZIwKrUkBOCuYkMBSxcFZnnLDQBmGhXUgoHCs4BIntoxdXPSPTWJxSe4Oa3e--dljaPWq2fu6v6gFyDSGJBFJ72IHl_VNCB6d3vlqa3yngekBpe5R6gGlPqLsR24PIxUi_rMnHBKVil-FLG5g</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xia, Yi</creator><creator>Zhang, Zekai</creator><creator>Xu, Jingzehua</creator><creator>Ren, Pengfei</creator><creator>Wang, Jingjing</creator><creator>Han, Zhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-3254-9917</orcidid><orcidid>https://orcid.org/0000-0003-3170-8952</orcidid></search><sort><creationdate>20240101</creationdate><title>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</title><author>Xia, Yi ; Zhang, Zekai ; Xu, Jingzehua ; Ren, Pengfei ; Wang, Jingjing ; Han, Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c906-8e2b345e9eca71120b034107921fc272a019a0ebcf131bf0b24e8cd5f5b954853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Constraints</topic><topic>Control systems design</topic><topic>Convergence</topic><topic>Cost effectiveness</topic><topic>Costs</topic><topic>Deep reinforcement learning</topic><topic>Energy consumption</topic><topic>mobile target tracking</topic><topic>Reconnaissance aircraft</topic><topic>Robust control</topic><topic>Search and rescue missions</topic><topic>Steady state models</topic><topic>Target tracking</topic><topic>time constraints</topic><topic>Time factors</topic><topic>Tracking</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zhang, Zekai</creatorcontrib><creatorcontrib>Xu, Jingzehua</creatorcontrib><creatorcontrib>Ren, Pengfei</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yi</au><au>Zhang, Zekai</au><au>Xu, Jingzehua</au><au>Ren, Pengfei</au><au>Wang, Jingjing</au><au>Han, Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><issue>12</issue><spage>19464</spage><epage>19479</epage><pages>19464-19479</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2024.3437776</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-3254-9917</orcidid><orcidid>https://orcid.org/0000-0003-3170-8952</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2024-01, Vol.73 (12), p.19464-19479 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVT_2024_3437776 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Autonomous aerial vehicles Constraints Control systems design Convergence Cost effectiveness Costs Deep reinforcement learning Energy consumption mobile target tracking Reconnaissance aircraft Robust control Search and rescue missions Steady state models Target tracking time constraints Time factors Tracking UAV Unmanned aerial vehicles Vehicle dynamics |
title | Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eye%20in%20the%20Sky:%20Energy%20Efficient%20Model-Based%20Reinforcement%20Learning%20Aided%20Target%20Tracking%20Using%20UAVs&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Xia,%20Yi&rft.date=2024-01-01&rft.volume=73&rft.issue=12&rft.spage=19464&rft.epage=19479&rft.pages=19464-19479&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2024.3437776&rft_dat=%3Cproquest_cross%3E3147516636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c906-8e2b345e9eca71120b034107921fc272a019a0ebcf131bf0b24e8cd5f5b954853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147516636&rft_id=info:pmid/&rft_ieee_id=10621697&rfr_iscdi=true |