Loading…

Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs

The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2024-01, Vol.73 (12), p.19464-19479
Main Authors: Xia, Yi, Zhang, Zekai, Xu, Jingzehua, Ren, Pengfei, Wang, Jingjing, Han, Zhu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 19479
container_issue 12
container_start_page 19464
container_title IEEE transactions on vehicular technology
container_volume 73
creator Xia, Yi
Zhang, Zekai
Xu, Jingzehua
Ren, Pengfei
Wang, Jingjing
Han, Zhu
description The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least.
doi_str_mv 10.1109/TVT.2024.3437776
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2024_3437776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10621697</ieee_id><sourcerecordid>3147516636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c906-8e2b345e9eca71120b034107921fc272a019a0ebcf131bf0b24e8cd5f5b954853</originalsourceid><addsrcrecordid>eNpNkMtPwzAMxiMEEuNx58AhEueOOEnbhduYykMaQoKya5Smzuge7Ui6Q_97WrYDF1v299mWf4TcABsDMHWfL_IxZ1yOhRRpmiYnZARKqEiJWJ2SEWMwiVQs43NyEcKqL6VUMCJl1iGtatp-I_1cdw80q9EvO5o5V9kK65a-NSVuokcTsKQfWNWu8Ra3gzJH4-uqXtJpVfZibvwSW5p7Y9dD9yv8xekiXJEzZzYBr4_5kuRPWT57iebvz6-z6TyyiiXRBHkhZIwKrUkBOCuYkMBSxcFZnnLDQBmGhXUgoHCs4BIntoxdXPSPTWJxSe4Oa3e--dljaPWq2fu6v6gFyDSGJBFJ72IHl_VNCB6d3vlqa3yngekBpe5R6gGlPqLsR24PIxUi_rMnHBKVil-FLG5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147516636</pqid></control><display><type>article</type><title>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</title><source>IEEE Xplore (Online service)</source><creator>Xia, Yi ; Zhang, Zekai ; Xu, Jingzehua ; Ren, Pengfei ; Wang, Jingjing ; Han, Zhu</creator><creatorcontrib>Xia, Yi ; Zhang, Zekai ; Xu, Jingzehua ; Ren, Pengfei ; Wang, Jingjing ; Han, Zhu</creatorcontrib><description>The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2024.3437776</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Constraints ; Control systems design ; Convergence ; Cost effectiveness ; Costs ; Deep reinforcement learning ; Energy consumption ; mobile target tracking ; Reconnaissance aircraft ; Robust control ; Search and rescue missions ; Steady state models ; Target tracking ; time constraints ; Time factors ; Tracking ; UAV ; Unmanned aerial vehicles ; Vehicle dynamics</subject><ispartof>IEEE transactions on vehicular technology, 2024-01, Vol.73 (12), p.19464-19479</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6606-5822 ; 0000-0002-3254-9917 ; 0000-0003-3170-8952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10621697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zhang, Zekai</creatorcontrib><creatorcontrib>Xu, Jingzehua</creatorcontrib><creatorcontrib>Ren, Pengfei</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><title>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Constraints</subject><subject>Control systems design</subject><subject>Convergence</subject><subject>Cost effectiveness</subject><subject>Costs</subject><subject>Deep reinforcement learning</subject><subject>Energy consumption</subject><subject>mobile target tracking</subject><subject>Reconnaissance aircraft</subject><subject>Robust control</subject><subject>Search and rescue missions</subject><subject>Steady state models</subject><subject>Target tracking</subject><subject>time constraints</subject><subject>Time factors</subject><subject>Tracking</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicle dynamics</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtPwzAMxiMEEuNx58AhEueOOEnbhduYykMaQoKya5Smzuge7Ui6Q_97WrYDF1v299mWf4TcABsDMHWfL_IxZ1yOhRRpmiYnZARKqEiJWJ2SEWMwiVQs43NyEcKqL6VUMCJl1iGtatp-I_1cdw80q9EvO5o5V9kK65a-NSVuokcTsKQfWNWu8Ra3gzJH4-uqXtJpVfZibvwSW5p7Y9dD9yv8xekiXJEzZzYBr4_5kuRPWT57iebvz6-z6TyyiiXRBHkhZIwKrUkBOCuYkMBSxcFZnnLDQBmGhXUgoHCs4BIntoxdXPSPTWJxSe4Oa3e--dljaPWq2fu6v6gFyDSGJBFJ72IHl_VNCB6d3vlqa3yngekBpe5R6gGlPqLsR24PIxUi_rMnHBKVil-FLG5g</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xia, Yi</creator><creator>Zhang, Zekai</creator><creator>Xu, Jingzehua</creator><creator>Ren, Pengfei</creator><creator>Wang, Jingjing</creator><creator>Han, Zhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-3254-9917</orcidid><orcidid>https://orcid.org/0000-0003-3170-8952</orcidid></search><sort><creationdate>20240101</creationdate><title>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</title><author>Xia, Yi ; Zhang, Zekai ; Xu, Jingzehua ; Ren, Pengfei ; Wang, Jingjing ; Han, Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c906-8e2b345e9eca71120b034107921fc272a019a0ebcf131bf0b24e8cd5f5b954853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Constraints</topic><topic>Control systems design</topic><topic>Convergence</topic><topic>Cost effectiveness</topic><topic>Costs</topic><topic>Deep reinforcement learning</topic><topic>Energy consumption</topic><topic>mobile target tracking</topic><topic>Reconnaissance aircraft</topic><topic>Robust control</topic><topic>Search and rescue missions</topic><topic>Steady state models</topic><topic>Target tracking</topic><topic>time constraints</topic><topic>Time factors</topic><topic>Tracking</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zhang, Zekai</creatorcontrib><creatorcontrib>Xu, Jingzehua</creatorcontrib><creatorcontrib>Ren, Pengfei</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yi</au><au>Zhang, Zekai</au><au>Xu, Jingzehua</au><au>Ren, Pengfei</au><au>Wang, Jingjing</au><au>Han, Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><issue>12</issue><spage>19464</spage><epage>19479</epage><pages>19464-19479</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The rapid response and high energy efficiency of the unmanned aerial vehicle (UAV) are crucial prerequisites for enabling time-sensitive and long-endurance target tracking missions, such as search and rescue, area reconnaissance, and convoy monitoring. However, existing research in target tracking primarily focuses on enhancing tracking accuracy, which struggles to adapt to tasks considering strict time constraints and energy consumption. To address these issues, this paper introduces a model-based reinforcement learning tracking strategy (MRLTS) for the UAV to minimize control costs and achieve user-specified tracking performance, including a two-stage design. In the first stage, a steady-state robust tracking controller is developed based on available model knowledge that forces the UAV to asymptotically approximate a predefined observation path in spite of uncertainties. In the second stage, an intelligent component based on the soft actor-critic (SAC) algorithm is customized to empower the UAV to strike a trade-off between prescribed tracking performance and energy consumption, wherein a skilled barrier function is constructed to interpret specified time constraints. The proposed paradigm can provide a higher sampling efficiency than SAC-based strategy. Simulation results demonstrate that our strategy outperforms benchmarks and results in a 46.3% cost-effectiveness improvement at least.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2024.3437776</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-3254-9917</orcidid><orcidid>https://orcid.org/0000-0003-3170-8952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2024-01, Vol.73 (12), p.19464-19479
issn 0018-9545
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2024_3437776
source IEEE Xplore (Online service)
subjects Algorithms
Autonomous aerial vehicles
Constraints
Control systems design
Convergence
Cost effectiveness
Costs
Deep reinforcement learning
Energy consumption
mobile target tracking
Reconnaissance aircraft
Robust control
Search and rescue missions
Steady state models
Target tracking
time constraints
Time factors
Tracking
UAV
Unmanned aerial vehicles
Vehicle dynamics
title Eye in the Sky: Energy Efficient Model-Based Reinforcement Learning Aided Target Tracking Using UAVs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eye%20in%20the%20Sky:%20Energy%20Efficient%20Model-Based%20Reinforcement%20Learning%20Aided%20Target%20Tracking%20Using%20UAVs&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Xia,%20Yi&rft.date=2024-01-01&rft.volume=73&rft.issue=12&rft.spage=19464&rft.epage=19479&rft.pages=19464-19479&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2024.3437776&rft_dat=%3Cproquest_cross%3E3147516636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c906-8e2b345e9eca71120b034107921fc272a019a0ebcf131bf0b24e8cd5f5b954853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147516636&rft_id=info:pmid/&rft_ieee_id=10621697&rfr_iscdi=true