Loading…
Power Allocation in Multibeam Satellite Systems: A Two-Stage Multi-Objective Optimization
Multibeam satellite systems offer flexibility that aims at efficiently reusing the available spectrum. To fully exploit the flexibility advantages, the payload resources-transmit power and bandwidth-must be efficiently allocated among multiple beams. This paper investigates the resource optimization...
Saved in:
Published in: | IEEE transactions on wireless communications 2015-06, Vol.14 (6), p.3171-3182 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multibeam satellite systems offer flexibility that aims at efficiently reusing the available spectrum. To fully exploit the flexibility advantages, the payload resources-transmit power and bandwidth-must be efficiently allocated among multiple beams. This paper investigates the resource optimization problem in multibeam satellites. The NP-hardness and inapproximability of the problem are demonstrated motivating the use of metaheuristics. A systematic approach accomplishing the best traffic match is carried out. The additional requirement of minimizing the total power consumption is then considered, giving rise to a multi-objective optimization approach. The solutions to the a priori accomplished traffic matching optimization are used to enhance the efficiency of the multi-objective metaheuristic method proposed and, consequently, of the multibeam satellite system. The optimized performance is represented by the Pareto front, which provides trade-off points between total power consumption and rate achieved. This allows the decomposition of the problem into independent color-based sub-problems rendering the proposed two-stage optimization framework suitable for dimensioning the next generation multispot satellite systems. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2015.2402682 |