Loading…

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimizatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2016-12, Vol.15 (12), p.8236-8248
Main Authors: Junyuan Wang, Huiling Zhu, Lin Dai, Gomes, Nathan J., Jiangzhou Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493
cites cdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493
container_end_page 8248
container_issue 12
container_start_page 8236
container_title IEEE transactions on wireless communications
container_volume 15
creator Junyuan Wang
Huiling Zhu
Lin Dai
Gomes, Nathan J.
Jiangzhou Wang
description This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K.
doi_str_mv 10.1109/TWC.2016.2613517
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2016_2613517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7576710</ieee_id><sourcerecordid>1848294109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmNwR-ISiXNHnLRJe9wqvqRVO2wTxyhNXdGpXUbTMvbv6djEyZb8vLb8EHIPbALAkqfVRzrhDOSESxARqAsygiiKA87D-PLYCxkAV_Ka3Hi_YQyUjKIRWc_dPkhds6vxp-oOdIamodO6dtZ0ldvS0rV0ua86-4lF8DecGY8Fzfq6q3qPLc2M99U30uw9W9DlwXfY-FtyVZra4925jsn65XmVvgXzxet7Op0HVgjRBTkYUwAyiaGyMZRcWKMsV0IUaEUeGj48YopcSsxjEDxivARuQ2byRNowEWPyeNq7a91Xj77TG9e32-GkhjiMeRIOagaKnSjbOu9bLPWurRrTHjQwfZSnB3n6KE-f5Q2Rh1OkQsR_XEVKKmDiF0PGaj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848294109</pqid></control><display><type>article</type><title>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Junyuan Wang ; Huiling Zhu ; Lin Dai ; Gomes, Nathan J. ; Jiangzhou Wang</creator><creatorcontrib>Junyuan Wang ; Huiling Zhu ; Lin Dai ; Gomes, Nathan J. ; Jiangzhou Wang</creatorcontrib><description>This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2016.2613517</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Array signal processing ; beam allocation algorithm ; Combinatorial analysis ; Complexity ; Complexity theory ; Data transmission ; Frequencies ; massive multiple-input-multiple-output (MIMO) ; Millimeter waves ; MIMO ; MIMO communication ; Optimization ; Resource management ; service ratio ; submodular optimization ; sum data rate ; Switched-beam based systems ; Switches</subject><ispartof>IEEE transactions on wireless communications, 2016-12, Vol.15 (12), p.8236-8248</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</citedby><cites>FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</cites><orcidid>0000-0002-1838-8336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7576710$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Junyuan Wang</creatorcontrib><creatorcontrib>Huiling Zhu</creatorcontrib><creatorcontrib>Lin Dai</creatorcontrib><creatorcontrib>Gomes, Nathan J.</creatorcontrib><creatorcontrib>Jiangzhou Wang</creatorcontrib><title>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Array signal processing</subject><subject>beam allocation algorithm</subject><subject>Combinatorial analysis</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Data transmission</subject><subject>Frequencies</subject><subject>massive multiple-input-multiple-output (MIMO)</subject><subject>Millimeter waves</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>Optimization</subject><subject>Resource management</subject><subject>service ratio</subject><subject>submodular optimization</subject><subject>sum data rate</subject><subject>Switched-beam based systems</subject><subject>Switches</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1PwzAMhiMEEmNwR-ISiXNHnLRJe9wqvqRVO2wTxyhNXdGpXUbTMvbv6djEyZb8vLb8EHIPbALAkqfVRzrhDOSESxARqAsygiiKA87D-PLYCxkAV_Ka3Hi_YQyUjKIRWc_dPkhds6vxp-oOdIamodO6dtZ0ldvS0rV0ua86-4lF8DecGY8Fzfq6q3qPLc2M99U30uw9W9DlwXfY-FtyVZra4925jsn65XmVvgXzxet7Op0HVgjRBTkYUwAyiaGyMZRcWKMsV0IUaEUeGj48YopcSsxjEDxivARuQ2byRNowEWPyeNq7a91Xj77TG9e32-GkhjiMeRIOagaKnSjbOu9bLPWurRrTHjQwfZSnB3n6KE-f5Q2Rh1OkQsR_XEVKKmDiF0PGaj4</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Junyuan Wang</creator><creator>Huiling Zhu</creator><creator>Lin Dai</creator><creator>Gomes, Nathan J.</creator><creator>Jiangzhou Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1838-8336</orcidid></search><sort><creationdate>201612</creationdate><title>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</title><author>Junyuan Wang ; Huiling Zhu ; Lin Dai ; Gomes, Nathan J. ; Jiangzhou Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Array signal processing</topic><topic>beam allocation algorithm</topic><topic>Combinatorial analysis</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Data transmission</topic><topic>Frequencies</topic><topic>massive multiple-input-multiple-output (MIMO)</topic><topic>Millimeter waves</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>Optimization</topic><topic>Resource management</topic><topic>service ratio</topic><topic>submodular optimization</topic><topic>sum data rate</topic><topic>Switched-beam based systems</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junyuan Wang</creatorcontrib><creatorcontrib>Huiling Zhu</creatorcontrib><creatorcontrib>Lin Dai</creatorcontrib><creatorcontrib>Gomes, Nathan J.</creatorcontrib><creatorcontrib>Jiangzhou Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junyuan Wang</au><au>Huiling Zhu</au><au>Lin Dai</au><au>Gomes, Nathan J.</au><au>Jiangzhou Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-12</date><risdate>2016</risdate><volume>15</volume><issue>12</issue><spage>8236</spage><epage>8248</epage><pages>8236-8248</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2016.2613517</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1838-8336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2016-12, Vol.15 (12), p.8236-8248
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2016_2613517
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Antennas
Array signal processing
beam allocation algorithm
Combinatorial analysis
Complexity
Complexity theory
Data transmission
Frequencies
massive multiple-input-multiple-output (MIMO)
Millimeter waves
MIMO
MIMO communication
Optimization
Resource management
service ratio
submodular optimization
sum data rate
Switched-beam based systems
Switches
title Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Complexity%20Beam%20Allocation%20for%20Switched-Beam%20Based%20Multiuser%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Junyuan%20Wang&rft.date=2016-12&rft.volume=15&rft.issue=12&rft.spage=8236&rft.epage=8248&rft.pages=8236-8248&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2016.2613517&rft_dat=%3Cproquest_cross%3E1848294109%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1848294109&rft_id=info:pmid/&rft_ieee_id=7576710&rfr_iscdi=true