Loading…
Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems
This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimizatio...
Saved in:
Published in: | IEEE transactions on wireless communications 2016-12, Vol.15 (12), p.8236-8248 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493 |
container_end_page | 8248 |
container_issue | 12 |
container_start_page | 8236 |
container_title | IEEE transactions on wireless communications |
container_volume | 15 |
creator | Junyuan Wang Huiling Zhu Lin Dai Gomes, Nathan J. Jiangzhou Wang |
description | This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K. |
doi_str_mv | 10.1109/TWC.2016.2613517 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2016_2613517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7576710</ieee_id><sourcerecordid>1848294109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmNwR-ISiXNHnLRJe9wqvqRVO2wTxyhNXdGpXUbTMvbv6djEyZb8vLb8EHIPbALAkqfVRzrhDOSESxARqAsygiiKA87D-PLYCxkAV_Ka3Hi_YQyUjKIRWc_dPkhds6vxp-oOdIamodO6dtZ0ldvS0rV0ua86-4lF8DecGY8Fzfq6q3qPLc2M99U30uw9W9DlwXfY-FtyVZra4925jsn65XmVvgXzxet7Op0HVgjRBTkYUwAyiaGyMZRcWKMsV0IUaEUeGj48YopcSsxjEDxivARuQ2byRNowEWPyeNq7a91Xj77TG9e32-GkhjiMeRIOagaKnSjbOu9bLPWurRrTHjQwfZSnB3n6KE-f5Q2Rh1OkQsR_XEVKKmDiF0PGaj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848294109</pqid></control><display><type>article</type><title>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Junyuan Wang ; Huiling Zhu ; Lin Dai ; Gomes, Nathan J. ; Jiangzhou Wang</creator><creatorcontrib>Junyuan Wang ; Huiling Zhu ; Lin Dai ; Gomes, Nathan J. ; Jiangzhou Wang</creatorcontrib><description>This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2016.2613517</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Array signal processing ; beam allocation algorithm ; Combinatorial analysis ; Complexity ; Complexity theory ; Data transmission ; Frequencies ; massive multiple-input-multiple-output (MIMO) ; Millimeter waves ; MIMO ; MIMO communication ; Optimization ; Resource management ; service ratio ; submodular optimization ; sum data rate ; Switched-beam based systems ; Switches</subject><ispartof>IEEE transactions on wireless communications, 2016-12, Vol.15 (12), p.8236-8248</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</citedby><cites>FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</cites><orcidid>0000-0002-1838-8336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7576710$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Junyuan Wang</creatorcontrib><creatorcontrib>Huiling Zhu</creatorcontrib><creatorcontrib>Lin Dai</creatorcontrib><creatorcontrib>Gomes, Nathan J.</creatorcontrib><creatorcontrib>Jiangzhou Wang</creatorcontrib><title>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Array signal processing</subject><subject>beam allocation algorithm</subject><subject>Combinatorial analysis</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Data transmission</subject><subject>Frequencies</subject><subject>massive multiple-input-multiple-output (MIMO)</subject><subject>Millimeter waves</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>Optimization</subject><subject>Resource management</subject><subject>service ratio</subject><subject>submodular optimization</subject><subject>sum data rate</subject><subject>Switched-beam based systems</subject><subject>Switches</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1PwzAMhiMEEmNwR-ISiXNHnLRJe9wqvqRVO2wTxyhNXdGpXUbTMvbv6djEyZb8vLb8EHIPbALAkqfVRzrhDOSESxARqAsygiiKA87D-PLYCxkAV_Ka3Hi_YQyUjKIRWc_dPkhds6vxp-oOdIamodO6dtZ0ldvS0rV0ua86-4lF8DecGY8Fzfq6q3qPLc2M99U30uw9W9DlwXfY-FtyVZra4925jsn65XmVvgXzxet7Op0HVgjRBTkYUwAyiaGyMZRcWKMsV0IUaEUeGj48YopcSsxjEDxivARuQ2byRNowEWPyeNq7a91Xj77TG9e32-GkhjiMeRIOagaKnSjbOu9bLPWurRrTHjQwfZSnB3n6KE-f5Q2Rh1OkQsR_XEVKKmDiF0PGaj4</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Junyuan Wang</creator><creator>Huiling Zhu</creator><creator>Lin Dai</creator><creator>Gomes, Nathan J.</creator><creator>Jiangzhou Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1838-8336</orcidid></search><sort><creationdate>201612</creationdate><title>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</title><author>Junyuan Wang ; Huiling Zhu ; Lin Dai ; Gomes, Nathan J. ; Jiangzhou Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Array signal processing</topic><topic>beam allocation algorithm</topic><topic>Combinatorial analysis</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Data transmission</topic><topic>Frequencies</topic><topic>massive multiple-input-multiple-output (MIMO)</topic><topic>Millimeter waves</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>Optimization</topic><topic>Resource management</topic><topic>service ratio</topic><topic>submodular optimization</topic><topic>sum data rate</topic><topic>Switched-beam based systems</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junyuan Wang</creatorcontrib><creatorcontrib>Huiling Zhu</creatorcontrib><creatorcontrib>Lin Dai</creatorcontrib><creatorcontrib>Gomes, Nathan J.</creatorcontrib><creatorcontrib>Jiangzhou Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junyuan Wang</au><au>Huiling Zhu</au><au>Lin Dai</au><au>Gomes, Nathan J.</au><au>Jiangzhou Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-12</date><risdate>2016</risdate><volume>15</volume><issue>12</issue><spage>8236</spage><epage>8248</epage><pages>8236-8248</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams N, the brute-force search results in intractable complexity O(NK), where K is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity O(K log N). Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio N/K.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2016.2613517</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1838-8336</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2016-12, Vol.15 (12), p.8236-8248 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2016_2613517 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Antennas Array signal processing beam allocation algorithm Combinatorial analysis Complexity Complexity theory Data transmission Frequencies massive multiple-input-multiple-output (MIMO) Millimeter waves MIMO MIMO communication Optimization Resource management service ratio submodular optimization sum data rate Switched-beam based systems Switches |
title | Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Complexity%20Beam%20Allocation%20for%20Switched-Beam%20Based%20Multiuser%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Junyuan%20Wang&rft.date=2016-12&rft.volume=15&rft.issue=12&rft.spage=8236&rft.epage=8248&rft.pages=8236-8248&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2016.2613517&rft_dat=%3Cproquest_cross%3E1848294109%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-b1aad1e06e47c81f23ca7c2733dec3b4a2517adb66eb8132502f12c40ab96c493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1848294109&rft_id=info:pmid/&rft_ieee_id=7576710&rfr_iscdi=true |