Loading…
Joint User Selection, Power Allocation, and Precoding Design With Imperfect CSIT for Multi-Cell MU-MIMO Downlink Systems
In this paper, a new optimization framework is presented for the joint design of user selection, power allocation, and precoding in multi-cell multi-user multiple-input multiple-output (MU-MIMO) systems when imperfect channel state information at transmitter (CSIT) is available. By representing the...
Saved in:
Published in: | IEEE transactions on wireless communications 2020-01, Vol.19 (1), p.162-176 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a new optimization framework is presented for the joint design of user selection, power allocation, and precoding in multi-cell multi-user multiple-input multiple-output (MU-MIMO) systems when imperfect channel state information at transmitter (CSIT) is available. By representing the joint optimization variables in a higher-dimensional space, the weighted sum-spectral efficiency maximization is formulated as the maximization of the product of Rayleigh quotients. Although this is still a non-convex problem, a computationally efficient algorithm, referred to as generalized power iteration precoding (GPIP), is proposed. The algorithm converges to a stationary point (local maximum) of the objective function and therefore it guarantees the first-order optimality of the solution. By adjusting the weights in the weighted sum-spectral efficiency, the GPIP yields a joint solution for user selection, power allocation, and downlink precoding. The GPIP can be extended to the multi-cell scenario where cooperative base stations perform joint user-cell selection and design their precodes by taking into account the inter-cell interference by sharing global imperfect CSIT. System-level simulations show the gains of the proposed approach with respect to conventional user selection and linear downlink precoding. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2019.2942916 |