Loading…

Joint User Selection, Power Allocation, and Precoding Design With Imperfect CSIT for Multi-Cell MU-MIMO Downlink Systems

In this paper, a new optimization framework is presented for the joint design of user selection, power allocation, and precoding in multi-cell multi-user multiple-input multiple-output (MU-MIMO) systems when imperfect channel state information at transmitter (CSIT) is available. By representing the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2020-01, Vol.19 (1), p.162-176
Main Authors: Choi, Jiwook, Lee, Namyoon, Hong, Song-Nam, Caire, Giuseppe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a new optimization framework is presented for the joint design of user selection, power allocation, and precoding in multi-cell multi-user multiple-input multiple-output (MU-MIMO) systems when imperfect channel state information at transmitter (CSIT) is available. By representing the joint optimization variables in a higher-dimensional space, the weighted sum-spectral efficiency maximization is formulated as the maximization of the product of Rayleigh quotients. Although this is still a non-convex problem, a computationally efficient algorithm, referred to as generalized power iteration precoding (GPIP), is proposed. The algorithm converges to a stationary point (local maximum) of the objective function and therefore it guarantees the first-order optimality of the solution. By adjusting the weights in the weighted sum-spectral efficiency, the GPIP yields a joint solution for user selection, power allocation, and downlink precoding. The GPIP can be extended to the multi-cell scenario where cooperative base stations perform joint user-cell selection and design their precodes by taking into account the inter-cell interference by sharing global imperfect CSIT. System-level simulations show the gains of the proposed approach with respect to conventional user selection and linear downlink precoding.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2019.2942916