Loading…
Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios
This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous recep...
Saved in:
Published in: | IEEE transactions on wireless communications 2020-03, Vol.19 (3), p.1839-1854 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273 |
container_end_page | 1854 |
container_issue | 3 |
container_start_page | 1839 |
container_title | IEEE transactions on wireless communications |
container_volume | 19 |
creator | Gomez-Cuba, Felipe Zorzi, Michele |
description | This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases. |
doi_str_mv | 10.1109/TWC.2019.2959295 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2019_2959295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937042</ieee_id><sourcerecordid>2376748580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7O0k2e5SittBY1JYel20ysdumSdxNFP-9KS0ehpnDe294HyG3nI04Z-phsRqPBONqJFSk-jkjAx5FSSBEmJwfbogDLmR8Sa683zLGZRxFA_I2b1q7NyWd2WpHP7IN5l1pq09qK5rasrR7bNHRlflGmnZla4NJ3dBXbH9qt_N0ZdsNTZdBOk3n9N3ktvbX5KIwpceb0x6S5fPTYjwJZvOX6fhxFmQA0AaSmxCZSfI4xNzwjIfAFaCMpRFrnnOOUSHXYAQrABQoVAhGMUySGGImJAzJ_TG3cfVXh77V27pzVf9SC-hjwiRKWK9iR1Xmau8dFrpxfV_3qznTB3C6B6cP4PQJXG-5O1osIv7LEwWShQL-AF_LZ38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376748580</pqid></control><display><type>article</type><title>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</title><source>IEEE Xplore (Online service)</source><creator>Gomez-Cuba, Felipe ; Zorzi, Michele</creator><creatorcontrib>Gomez-Cuba, Felipe ; Zorzi, Michele</creatorcontrib><description>This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2019.2959295</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna arrays ; beamforming ; Computer simulation ; dynamic duplexing ; Graph matching ; millimeter wave ; Millimeter waves ; Mixed integer ; Multiplexing ; network utility maximization ; Networks ; Optimal scheduling ; Optimization ; Physical layer ; Receivers ; Schedules ; Scheduling ; space division multiplexing ; Spread spectrum communication ; Topology ; Transmitters</subject><ispartof>IEEE transactions on wireless communications, 2020-03, Vol.19 (3), p.1839-1854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</citedby><cites>FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</cites><orcidid>0000-0003-2870-4678 ; 0000-0003-3993-5703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Zorzi, Michele</creatorcontrib><title>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>beamforming</subject><subject>Computer simulation</subject><subject>dynamic duplexing</subject><subject>Graph matching</subject><subject>millimeter wave</subject><subject>Millimeter waves</subject><subject>Mixed integer</subject><subject>Multiplexing</subject><subject>network utility maximization</subject><subject>Networks</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Physical layer</subject><subject>Receivers</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>space division multiplexing</subject><subject>Spread spectrum communication</subject><subject>Topology</subject><subject>Transmitters</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7O0k2e5SittBY1JYel20ysdumSdxNFP-9KS0ehpnDe294HyG3nI04Z-phsRqPBONqJFSk-jkjAx5FSSBEmJwfbogDLmR8Sa683zLGZRxFA_I2b1q7NyWd2WpHP7IN5l1pq09qK5rasrR7bNHRlflGmnZla4NJ3dBXbH9qt_N0ZdsNTZdBOk3n9N3ktvbX5KIwpceb0x6S5fPTYjwJZvOX6fhxFmQA0AaSmxCZSfI4xNzwjIfAFaCMpRFrnnOOUSHXYAQrABQoVAhGMUySGGImJAzJ_TG3cfVXh77V27pzVf9SC-hjwiRKWK9iR1Xmau8dFrpxfV_3qznTB3C6B6cP4PQJXG-5O1osIv7LEwWShQL-AF_LZ38</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Gomez-Cuba, Felipe</creator><creator>Zorzi, Michele</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2870-4678</orcidid><orcidid>https://orcid.org/0000-0003-3993-5703</orcidid></search><sort><creationdate>202003</creationdate><title>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</title><author>Gomez-Cuba, Felipe ; Zorzi, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>beamforming</topic><topic>Computer simulation</topic><topic>dynamic duplexing</topic><topic>Graph matching</topic><topic>millimeter wave</topic><topic>Millimeter waves</topic><topic>Mixed integer</topic><topic>Multiplexing</topic><topic>network utility maximization</topic><topic>Networks</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Physical layer</topic><topic>Receivers</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>space division multiplexing</topic><topic>Spread spectrum communication</topic><topic>Topology</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Zorzi, Michele</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Cuba, Felipe</au><au>Zorzi, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2020-03</date><risdate>2020</risdate><volume>19</volume><issue>3</issue><spage>1839</spage><epage>1854</epage><pages>1839-1854</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2019.2959295</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2870-4678</orcidid><orcidid>https://orcid.org/0000-0003-3993-5703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2020-03, Vol.19 (3), p.1839-1854 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2019_2959295 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Antenna arrays beamforming Computer simulation dynamic duplexing Graph matching millimeter wave Millimeter waves Mixed integer Multiplexing network utility maximization Networks Optimal scheduling Optimization Physical layer Receivers Schedules Scheduling space division multiplexing Spread spectrum communication Topology Transmitters |
title | Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Link%20Scheduling%20in%20Millimeter%20Wave%20Multi-Hop%20Networks%20With%20MU-MIMO%20Radios&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Gomez-Cuba,%20Felipe&rft.date=2020-03&rft.volume=19&rft.issue=3&rft.spage=1839&rft.epage=1854&rft.pages=1839-1854&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2019.2959295&rft_dat=%3Cproquest_cross%3E2376748580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376748580&rft_id=info:pmid/&rft_ieee_id=8937042&rfr_iscdi=true |