Loading…

Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios

This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous recep...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2020-03, Vol.19 (3), p.1839-1854
Main Authors: Gomez-Cuba, Felipe, Zorzi, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273
cites cdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273
container_end_page 1854
container_issue 3
container_start_page 1839
container_title IEEE transactions on wireless communications
container_volume 19
creator Gomez-Cuba, Felipe
Zorzi, Michele
description This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases.
doi_str_mv 10.1109/TWC.2019.2959295
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2019_2959295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937042</ieee_id><sourcerecordid>2376748580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7O0k2e5SittBY1JYel20ysdumSdxNFP-9KS0ehpnDe294HyG3nI04Z-phsRqPBONqJFSk-jkjAx5FSSBEmJwfbogDLmR8Sa683zLGZRxFA_I2b1q7NyWd2WpHP7IN5l1pq09qK5rasrR7bNHRlflGmnZla4NJ3dBXbH9qt_N0ZdsNTZdBOk3n9N3ktvbX5KIwpceb0x6S5fPTYjwJZvOX6fhxFmQA0AaSmxCZSfI4xNzwjIfAFaCMpRFrnnOOUSHXYAQrABQoVAhGMUySGGImJAzJ_TG3cfVXh77V27pzVf9SC-hjwiRKWK9iR1Xmau8dFrpxfV_3qznTB3C6B6cP4PQJXG-5O1osIv7LEwWShQL-AF_LZ38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376748580</pqid></control><display><type>article</type><title>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</title><source>IEEE Xplore (Online service)</source><creator>Gomez-Cuba, Felipe ; Zorzi, Michele</creator><creatorcontrib>Gomez-Cuba, Felipe ; Zorzi, Michele</creatorcontrib><description>This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2019.2959295</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna arrays ; beamforming ; Computer simulation ; dynamic duplexing ; Graph matching ; millimeter wave ; Millimeter waves ; Mixed integer ; Multiplexing ; network utility maximization ; Networks ; Optimal scheduling ; Optimization ; Physical layer ; Receivers ; Schedules ; Scheduling ; space division multiplexing ; Spread spectrum communication ; Topology ; Transmitters</subject><ispartof>IEEE transactions on wireless communications, 2020-03, Vol.19 (3), p.1839-1854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</citedby><cites>FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</cites><orcidid>0000-0003-2870-4678 ; 0000-0003-3993-5703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Zorzi, Michele</creatorcontrib><title>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>beamforming</subject><subject>Computer simulation</subject><subject>dynamic duplexing</subject><subject>Graph matching</subject><subject>millimeter wave</subject><subject>Millimeter waves</subject><subject>Mixed integer</subject><subject>Multiplexing</subject><subject>network utility maximization</subject><subject>Networks</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Physical layer</subject><subject>Receivers</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>space division multiplexing</subject><subject>Spread spectrum communication</subject><subject>Topology</subject><subject>Transmitters</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7O0k2e5SittBY1JYel20ysdumSdxNFP-9KS0ehpnDe294HyG3nI04Z-phsRqPBONqJFSk-jkjAx5FSSBEmJwfbogDLmR8Sa683zLGZRxFA_I2b1q7NyWd2WpHP7IN5l1pq09qK5rasrR7bNHRlflGmnZla4NJ3dBXbH9qt_N0ZdsNTZdBOk3n9N3ktvbX5KIwpceb0x6S5fPTYjwJZvOX6fhxFmQA0AaSmxCZSfI4xNzwjIfAFaCMpRFrnnOOUSHXYAQrABQoVAhGMUySGGImJAzJ_TG3cfVXh77V27pzVf9SC-hjwiRKWK9iR1Xmau8dFrpxfV_3qznTB3C6B6cP4PQJXG-5O1osIv7LEwWShQL-AF_LZ38</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Gomez-Cuba, Felipe</creator><creator>Zorzi, Michele</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2870-4678</orcidid><orcidid>https://orcid.org/0000-0003-3993-5703</orcidid></search><sort><creationdate>202003</creationdate><title>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</title><author>Gomez-Cuba, Felipe ; Zorzi, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>beamforming</topic><topic>Computer simulation</topic><topic>dynamic duplexing</topic><topic>Graph matching</topic><topic>millimeter wave</topic><topic>Millimeter waves</topic><topic>Mixed integer</topic><topic>Multiplexing</topic><topic>network utility maximization</topic><topic>Networks</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Physical layer</topic><topic>Receivers</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>space division multiplexing</topic><topic>Spread spectrum communication</topic><topic>Topology</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Zorzi, Michele</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Cuba, Felipe</au><au>Zorzi, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2020-03</date><risdate>2020</risdate><volume>19</volume><issue>3</issue><spage>1839</spage><epage>1854</epage><pages>1839-1854</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper studies the maximum throughput achievable with optimal scheduling in multi-hop mmWave picocellular networks with Multi-user Multiple-Input Multiple-Output (MU-MIMO) radios. MU-MIMO enables simultaneous transmission to multiple receivers (Space Division Multiplexing) and simultaneous reception from multiple transmitters (Space Division Multiple Access). The main contribution is the extension to MU-MIMO of the Network Utility Maximization (NUM) scheduling framework for multi-hop networks. We generalize to MU-MIMO the classic proof that Maximum Back Pressure (MBP) scheduling is NUM optimal. MBP requires the solution of an optimization that becomes harder with MU-MIMO radios. In prior models with one-to-one transmission and reception, each valid schedule was a matching over a graph. However, with MU-MIMO each valid schedule is, instead, a Directed Bipartite SubGraph (DBSG). In the general case this prevents finding efficient algorithms to solve the scheduler. We make MU-MIMO MBP scheduling tractable by assuming fixed power allocation, so the optimal scheduler is the Maximum Weighted DBSG. The MWDBSG problem can be solved using standard Mixed Integer Linear Programing. We simulate multi-hop mmWave picocellular networks and show that a MU-MIMO MBP scheduler enables a 160% increase in network throughput versus the classic one-to-one MBP scheduler, while fair rate allocation mechanisms are used in both cases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2019.2959295</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2870-4678</orcidid><orcidid>https://orcid.org/0000-0003-3993-5703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2020-03, Vol.19 (3), p.1839-1854
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2019_2959295
source IEEE Xplore (Online service)
subjects Algorithms
Antenna arrays
beamforming
Computer simulation
dynamic duplexing
Graph matching
millimeter wave
Millimeter waves
Mixed integer
Multiplexing
network utility maximization
Networks
Optimal scheduling
Optimization
Physical layer
Receivers
Schedules
Scheduling
space division multiplexing
Spread spectrum communication
Topology
Transmitters
title Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Link%20Scheduling%20in%20Millimeter%20Wave%20Multi-Hop%20Networks%20With%20MU-MIMO%20Radios&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Gomez-Cuba,%20Felipe&rft.date=2020-03&rft.volume=19&rft.issue=3&rft.spage=1839&rft.epage=1854&rft.pages=1839-1854&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2019.2959295&rft_dat=%3Cproquest_cross%3E2376748580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-71a4e0a8d64eda1c143193e767a2b1d11e5f7b3a20f33939e9e3a90e886360273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376748580&rft_id=info:pmid/&rft_ieee_id=8937042&rfr_iscdi=true