Loading…

Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks

Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downli...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2020-05, Vol.19 (5), p.3064-3076
Main Authors: Guo, Huayan, Liang, Ying-Chang, Chen, Jie, Larsson, Erik G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503
cites cdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503
container_end_page 3076
container_issue 5
container_start_page 3064
container_title IEEE transactions on wireless communications
container_volume 19
creator Guo, Huayan
Liang, Ying-Chang
Chen, Jie
Larsson, Erik G.
description Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.
doi_str_mv 10.1109/TWC.2020.2970061
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2020_2970061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8982186</ieee_id><sourcerecordid>2401124832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhYMoWKt7wU3Adeq8k1mW-ipUhVrtSoZJclOnppk6k1D115uQ0tU9i-8cLl8QXGI0whjJm8VyMiKIoBGRMUICHwUDzHkSEcKS4y5TEWESi9PgzPs1QjgWnA-CjyWY1WcNefjabKK5riF80j9mY_50bWwVFtaFc8hsVZhV43RaQjitaihLs4Kqbkuu0BmEY5O3E0vjoATvw2eod9Z9-fPgpNClh4v9HQZv93eLyWM0e3mYTsazKGOM1FGcM5EKSbnmWMaMZQXCqMhTzTglqSw4TRDIXIqY0lhrLpOU4ZwlOkaQc47oMIj6Xb-DbZOqrTMb7X6V1Ubdmvexsm6lStMoLASTHX_d81tnvxvwtVrbxlXti4owhHHrjJKWQj2VOeu9g-Kwi5HqpKtWuuqkq730tnLVVwwAHPBEJgQngv4Dg_V9YA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401124832</pqid></control><display><type>article</type><title>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guo, Huayan ; Liang, Ying-Chang ; Chen, Jie ; Larsson, Erik G.</creator><creatorcontrib>Guo, Huayan ; Liang, Ying-Chang ; Chen, Jie ; Larsson, Erik G.</creatorcontrib><description>Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.</description><identifier>ISSN: 1536-1276</identifier><identifier>ISSN: 1558-2248</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2020.2970061</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Array signal processing ; Beamforming ; Channel estimation ; Communications systems ; fractional programming ; Mathematical programming ; MISO (control systems) ; MISO communication ; multiple-input-multiple-output (MIMO) ; Numerical methods ; Optimization ; passive radio ; Precoding ; Reconfigurable intelligent surfaces ; Reconfigurable intelligent surfaces (RIS) ; Steering ; stochastic successive convex approximation ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2020-05, Vol.19 (5), p.3064-3076</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</citedby><cites>FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</cites><orcidid>0000-0002-7599-4367 ; 0000-0001-8419-150X ; 0000-0003-2671-5090 ; 0000-0002-2196-9799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8982186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166490$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Larsson, Erik G.</creatorcontrib><title>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Channel estimation</subject><subject>Communications systems</subject><subject>fractional programming</subject><subject>Mathematical programming</subject><subject>MISO (control systems)</subject><subject>MISO communication</subject><subject>multiple-input-multiple-output (MIMO)</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>passive radio</subject><subject>Precoding</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Reconfigurable intelligent surfaces (RIS)</subject><subject>Steering</subject><subject>stochastic successive convex approximation</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhYMoWKt7wU3Adeq8k1mW-ipUhVrtSoZJclOnppk6k1D115uQ0tU9i-8cLl8QXGI0whjJm8VyMiKIoBGRMUICHwUDzHkSEcKS4y5TEWESi9PgzPs1QjgWnA-CjyWY1WcNefjabKK5riF80j9mY_50bWwVFtaFc8hsVZhV43RaQjitaihLs4Kqbkuu0BmEY5O3E0vjoATvw2eod9Z9-fPgpNClh4v9HQZv93eLyWM0e3mYTsazKGOM1FGcM5EKSbnmWMaMZQXCqMhTzTglqSw4TRDIXIqY0lhrLpOU4ZwlOkaQc47oMIj6Xb-DbZOqrTMb7X6V1Ubdmvexsm6lStMoLASTHX_d81tnvxvwtVrbxlXti4owhHHrjJKWQj2VOeu9g-Kwi5HqpKtWuuqkq730tnLVVwwAHPBEJgQngv4Dg_V9YA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Guo, Huayan</creator><creator>Liang, Ying-Chang</creator><creator>Chen, Jie</creator><creator>Larsson, Erik G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0002-7599-4367</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0002-2196-9799</orcidid></search><sort><creationdate>20200501</creationdate><title>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</title><author>Guo, Huayan ; Liang, Ying-Chang ; Chen, Jie ; Larsson, Erik G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Channel estimation</topic><topic>Communications systems</topic><topic>fractional programming</topic><topic>Mathematical programming</topic><topic>MISO (control systems)</topic><topic>MISO communication</topic><topic>multiple-input-multiple-output (MIMO)</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>passive radio</topic><topic>Precoding</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Reconfigurable intelligent surfaces (RIS)</topic><topic>Steering</topic><topic>stochastic successive convex approximation</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Larsson, Erik G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huayan</au><au>Liang, Ying-Chang</au><au>Chen, Jie</au><au>Larsson, Erik G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>19</volume><issue>5</issue><spage>3064</spage><epage>3076</epage><pages>3064-3076</pages><issn>1536-1276</issn><issn>1558-2248</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2020.2970061</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7599-4367</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0002-2196-9799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2020-05, Vol.19 (5), p.3064-3076
issn 1536-1276
1558-2248
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2020_2970061
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Approximation algorithms
Array signal processing
Beamforming
Channel estimation
Communications systems
fractional programming
Mathematical programming
MISO (control systems)
MISO communication
multiple-input-multiple-output (MIMO)
Numerical methods
Optimization
passive radio
Precoding
Reconfigurable intelligent surfaces
Reconfigurable intelligent surfaces (RIS)
Steering
stochastic successive convex approximation
Wireless communication
Wireless networks
title Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Sum-Rate%20Maximization%20for%20Reconfigurable%20Intelligent%20Surface%20Aided%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Guo,%20Huayan&rft.date=2020-05-01&rft.volume=19&rft.issue=5&rft.spage=3064&rft.epage=3076&rft.pages=3064-3076&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2020.2970061&rft_dat=%3Cproquest_cross%3E2401124832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401124832&rft_id=info:pmid/&rft_ieee_id=8982186&rfr_iscdi=true