Loading…
Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks
Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downli...
Saved in:
Published in: | IEEE transactions on wireless communications 2020-05, Vol.19 (5), p.3064-3076 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503 |
container_end_page | 3076 |
container_issue | 5 |
container_start_page | 3064 |
container_title | IEEE transactions on wireless communications |
container_volume | 19 |
creator | Guo, Huayan Liang, Ying-Chang Chen, Jie Larsson, Erik G. |
description | Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%. |
doi_str_mv | 10.1109/TWC.2020.2970061 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2020_2970061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8982186</ieee_id><sourcerecordid>2401124832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhYMoWKt7wU3Adeq8k1mW-ipUhVrtSoZJclOnppk6k1D115uQ0tU9i-8cLl8QXGI0whjJm8VyMiKIoBGRMUICHwUDzHkSEcKS4y5TEWESi9PgzPs1QjgWnA-CjyWY1WcNefjabKK5riF80j9mY_50bWwVFtaFc8hsVZhV43RaQjitaihLs4Kqbkuu0BmEY5O3E0vjoATvw2eod9Z9-fPgpNClh4v9HQZv93eLyWM0e3mYTsazKGOM1FGcM5EKSbnmWMaMZQXCqMhTzTglqSw4TRDIXIqY0lhrLpOU4ZwlOkaQc47oMIj6Xb-DbZOqrTMb7X6V1Ubdmvexsm6lStMoLASTHX_d81tnvxvwtVrbxlXti4owhHHrjJKWQj2VOeu9g-Kwi5HqpKtWuuqkq730tnLVVwwAHPBEJgQngv4Dg_V9YA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401124832</pqid></control><display><type>article</type><title>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guo, Huayan ; Liang, Ying-Chang ; Chen, Jie ; Larsson, Erik G.</creator><creatorcontrib>Guo, Huayan ; Liang, Ying-Chang ; Chen, Jie ; Larsson, Erik G.</creatorcontrib><description>Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.</description><identifier>ISSN: 1536-1276</identifier><identifier>ISSN: 1558-2248</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2020.2970061</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Array signal processing ; Beamforming ; Channel estimation ; Communications systems ; fractional programming ; Mathematical programming ; MISO (control systems) ; MISO communication ; multiple-input-multiple-output (MIMO) ; Numerical methods ; Optimization ; passive radio ; Precoding ; Reconfigurable intelligent surfaces ; Reconfigurable intelligent surfaces (RIS) ; Steering ; stochastic successive convex approximation ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2020-05, Vol.19 (5), p.3064-3076</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</citedby><cites>FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</cites><orcidid>0000-0002-7599-4367 ; 0000-0001-8419-150X ; 0000-0003-2671-5090 ; 0000-0002-2196-9799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8982186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166490$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Larsson, Erik G.</creatorcontrib><title>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Channel estimation</subject><subject>Communications systems</subject><subject>fractional programming</subject><subject>Mathematical programming</subject><subject>MISO (control systems)</subject><subject>MISO communication</subject><subject>multiple-input-multiple-output (MIMO)</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>passive radio</subject><subject>Precoding</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Reconfigurable intelligent surfaces (RIS)</subject><subject>Steering</subject><subject>stochastic successive convex approximation</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhYMoWKt7wU3Adeq8k1mW-ipUhVrtSoZJclOnppk6k1D115uQ0tU9i-8cLl8QXGI0whjJm8VyMiKIoBGRMUICHwUDzHkSEcKS4y5TEWESi9PgzPs1QjgWnA-CjyWY1WcNefjabKK5riF80j9mY_50bWwVFtaFc8hsVZhV43RaQjitaihLs4Kqbkuu0BmEY5O3E0vjoATvw2eod9Z9-fPgpNClh4v9HQZv93eLyWM0e3mYTsazKGOM1FGcM5EKSbnmWMaMZQXCqMhTzTglqSw4TRDIXIqY0lhrLpOU4ZwlOkaQc47oMIj6Xb-DbZOqrTMb7X6V1Ubdmvexsm6lStMoLASTHX_d81tnvxvwtVrbxlXti4owhHHrjJKWQj2VOeu9g-Kwi5HqpKtWuuqkq730tnLVVwwAHPBEJgQngv4Dg_V9YA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Guo, Huayan</creator><creator>Liang, Ying-Chang</creator><creator>Chen, Jie</creator><creator>Larsson, Erik G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0002-7599-4367</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0002-2196-9799</orcidid></search><sort><creationdate>20200501</creationdate><title>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</title><author>Guo, Huayan ; Liang, Ying-Chang ; Chen, Jie ; Larsson, Erik G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Channel estimation</topic><topic>Communications systems</topic><topic>fractional programming</topic><topic>Mathematical programming</topic><topic>MISO (control systems)</topic><topic>MISO communication</topic><topic>multiple-input-multiple-output (MIMO)</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>passive radio</topic><topic>Precoding</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Reconfigurable intelligent surfaces (RIS)</topic><topic>Steering</topic><topic>stochastic successive convex approximation</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Larsson, Erik G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huayan</au><au>Liang, Ying-Chang</au><au>Chen, Jie</au><au>Larsson, Erik G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>19</volume><issue>5</issue><spage>3064</spage><epage>3076</epage><pages>3064-3076</pages><issn>1536-1276</issn><issn>1558-2248</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided multiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2020.2970061</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7599-4367</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0002-2196-9799</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2020-05, Vol.19 (5), p.3064-3076 |
issn | 1536-1276 1558-2248 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2020_2970061 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Approximation algorithms Array signal processing Beamforming Channel estimation Communications systems fractional programming Mathematical programming MISO (control systems) MISO communication multiple-input-multiple-output (MIMO) Numerical methods Optimization passive radio Precoding Reconfigurable intelligent surfaces Reconfigurable intelligent surfaces (RIS) Steering stochastic successive convex approximation Wireless communication Wireless networks |
title | Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Sum-Rate%20Maximization%20for%20Reconfigurable%20Intelligent%20Surface%20Aided%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Guo,%20Huayan&rft.date=2020-05-01&rft.volume=19&rft.issue=5&rft.spage=3064&rft.epage=3076&rft.pages=3064-3076&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2020.2970061&rft_dat=%3Cproquest_cross%3E2401124832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-7d46b6935a519744cf010fdba4532b9f5380e9d967337aa598b41d48a70ed5503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401124832&rft_id=info:pmid/&rft_ieee_id=8982186&rfr_iscdi=true |