Loading…

Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT

With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2021-10, Vol.20 (10), p.6743-6757
Main Authors: Xia, Shichao, Yao, Zhixiu, Li, Yun, Mao, Shiwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663
cites cdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663
container_end_page 6757
container_issue 10
container_start_page 6743
container_title IEEE transactions on wireless communications
container_volume 20
creator Xia, Shichao
Yao, Zhixiu
Li, Yun
Mao, Shiwen
description With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach.
doi_str_mv 10.1109/TWC.2021.3076201
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2021_3076201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424444</ieee_id><sourcerecordid>2580100402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</originalsourceid><addsrcrecordid>eNo9UFFLwzAQLqLgnL4LvgR87kzSJG0fpU432BjIZI8lbS61Y0tm0or796ZueC93B993331fFN0TPCEE50_rTTGhmJJJglNBMbmIRoTzLKaUZZfDnIiY0FRcRzfebzEmqeB8FP2szK41gF5a37m26jtQaKX1zkrVmgZJo1Bh94e-G7Z38LZ3NaClNLKBPZgObdruE00NuOaIZtJ9g_-DauvQDDpwtgEDtvdoOS3iqZHVLijM7fo2utJy5-Hu3MfRx-t0XczixeptXjwv4jpJki6Wgtcix0SB5jnJuNC1qCivgDKllcqYSmmwifNE1krnCvOK4IzJLGcamBDJOHo83T04-9WH78pt8GCCZEkDj2DMMA0ofELVznrvQJcH1-6lO5YEl0O-Zci3HPItz_kGysOJ0gLAPzxnlIVKfgHBYXdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580100402</pqid></control><display><type>article</type><title>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xia, Shichao ; Yao, Zhixiu ; Li, Yun ; Mao, Shiwen</creator><creatorcontrib>Xia, Shichao ; Yao, Zhixiu ; Li, Yun ; Mao, Shiwen</creatorcontrib><description>With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3076201</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Applications programs ; Artificial intelligence ; Batteries ; Cloud computing ; Computation offloading ; Edge computing ; Energy harvesting ; Energy levels ; Energy management ; Game theory ; Internet of Things ; Mobile computing ; mobile edge computing ; Optimization ; perturbed Lyapunov optimization ; Resource allocation ; Resource management ; Servers ; Task analysis ; User experience ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-10, Vol.20 (10), p.6743-6757</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</citedby><cites>FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</cites><orcidid>0000-0002-7052-0007 ; 0000-0003-2418-9736 ; 0000-0001-8477-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424444$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xia, Shichao</creatorcontrib><creatorcontrib>Yao, Zhixiu</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><title>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Artificial intelligence</subject><subject>Batteries</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Edge computing</subject><subject>Energy harvesting</subject><subject>Energy levels</subject><subject>Energy management</subject><subject>Game theory</subject><subject>Internet of Things</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Optimization</subject><subject>perturbed Lyapunov optimization</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>User experience</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UFFLwzAQLqLgnL4LvgR87kzSJG0fpU432BjIZI8lbS61Y0tm0or796ZueC93B993331fFN0TPCEE50_rTTGhmJJJglNBMbmIRoTzLKaUZZfDnIiY0FRcRzfebzEmqeB8FP2szK41gF5a37m26jtQaKX1zkrVmgZJo1Bh94e-G7Z38LZ3NaClNLKBPZgObdruE00NuOaIZtJ9g_-DauvQDDpwtgEDtvdoOS3iqZHVLijM7fo2utJy5-Hu3MfRx-t0XczixeptXjwv4jpJki6Wgtcix0SB5jnJuNC1qCivgDKllcqYSmmwifNE1krnCvOK4IzJLGcamBDJOHo83T04-9WH78pt8GCCZEkDj2DMMA0ofELVznrvQJcH1-6lO5YEl0O-Zci3HPItz_kGysOJ0gLAPzxnlIVKfgHBYXdI</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Xia, Shichao</creator><creator>Yao, Zhixiu</creator><creator>Li, Yun</creator><creator>Mao, Shiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid><orcidid>https://orcid.org/0000-0003-2418-9736</orcidid><orcidid>https://orcid.org/0000-0001-8477-8845</orcidid></search><sort><creationdate>202110</creationdate><title>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</title><author>Xia, Shichao ; Yao, Zhixiu ; Li, Yun ; Mao, Shiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Artificial intelligence</topic><topic>Batteries</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Edge computing</topic><topic>Energy harvesting</topic><topic>Energy levels</topic><topic>Energy management</topic><topic>Game theory</topic><topic>Internet of Things</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Optimization</topic><topic>perturbed Lyapunov optimization</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>User experience</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Shichao</creatorcontrib><creatorcontrib>Yao, Zhixiu</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Shichao</au><au>Yao, Zhixiu</au><au>Li, Yun</au><au>Mao, Shiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-10</date><risdate>2021</risdate><volume>20</volume><issue>10</issue><spage>6743</spage><epage>6757</epage><pages>6743-6757</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3076201</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid><orcidid>https://orcid.org/0000-0003-2418-9736</orcidid><orcidid>https://orcid.org/0000-0001-8477-8845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2021-10, Vol.20 (10), p.6743-6757
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2021_3076201
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applications programs
Artificial intelligence
Batteries
Cloud computing
Computation offloading
Edge computing
Energy harvesting
Energy levels
Energy management
Game theory
Internet of Things
Mobile computing
mobile edge computing
Optimization
perturbed Lyapunov optimization
Resource allocation
Resource management
Servers
Task analysis
User experience
Wireless communication
title Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Distributed%20Offloading%20and%20Computing%20Resource%20Management%20With%20Energy%20Harvesting%20for%20Heterogeneous%20MEC-Enabled%20IoT&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Xia,%20Shichao&rft.date=2021-10&rft.volume=20&rft.issue=10&rft.spage=6743&rft.epage=6757&rft.pages=6743-6757&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3076201&rft_dat=%3Cproquest_cross%3E2580100402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580100402&rft_id=info:pmid/&rft_ieee_id=9424444&rfr_iscdi=true