Loading…
Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT
With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can s...
Saved in:
Published in: | IEEE transactions on wireless communications 2021-10, Vol.20 (10), p.6743-6757 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663 |
container_end_page | 6757 |
container_issue | 10 |
container_start_page | 6743 |
container_title | IEEE transactions on wireless communications |
container_volume | 20 |
creator | Xia, Shichao Yao, Zhixiu Li, Yun Mao, Shiwen |
description | With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach. |
doi_str_mv | 10.1109/TWC.2021.3076201 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2021_3076201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424444</ieee_id><sourcerecordid>2580100402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</originalsourceid><addsrcrecordid>eNo9UFFLwzAQLqLgnL4LvgR87kzSJG0fpU432BjIZI8lbS61Y0tm0or796ZueC93B993331fFN0TPCEE50_rTTGhmJJJglNBMbmIRoTzLKaUZZfDnIiY0FRcRzfebzEmqeB8FP2szK41gF5a37m26jtQaKX1zkrVmgZJo1Bh94e-G7Z38LZ3NaClNLKBPZgObdruE00NuOaIZtJ9g_-DauvQDDpwtgEDtvdoOS3iqZHVLijM7fo2utJy5-Hu3MfRx-t0XczixeptXjwv4jpJki6Wgtcix0SB5jnJuNC1qCivgDKllcqYSmmwifNE1krnCvOK4IzJLGcamBDJOHo83T04-9WH78pt8GCCZEkDj2DMMA0ofELVznrvQJcH1-6lO5YEl0O-Zci3HPItz_kGysOJ0gLAPzxnlIVKfgHBYXdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580100402</pqid></control><display><type>article</type><title>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xia, Shichao ; Yao, Zhixiu ; Li, Yun ; Mao, Shiwen</creator><creatorcontrib>Xia, Shichao ; Yao, Zhixiu ; Li, Yun ; Mao, Shiwen</creatorcontrib><description>With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3076201</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Applications programs ; Artificial intelligence ; Batteries ; Cloud computing ; Computation offloading ; Edge computing ; Energy harvesting ; Energy levels ; Energy management ; Game theory ; Internet of Things ; Mobile computing ; mobile edge computing ; Optimization ; perturbed Lyapunov optimization ; Resource allocation ; Resource management ; Servers ; Task analysis ; User experience ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-10, Vol.20 (10), p.6743-6757</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</citedby><cites>FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</cites><orcidid>0000-0002-7052-0007 ; 0000-0003-2418-9736 ; 0000-0001-8477-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424444$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xia, Shichao</creatorcontrib><creatorcontrib>Yao, Zhixiu</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><title>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Artificial intelligence</subject><subject>Batteries</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Edge computing</subject><subject>Energy harvesting</subject><subject>Energy levels</subject><subject>Energy management</subject><subject>Game theory</subject><subject>Internet of Things</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Optimization</subject><subject>perturbed Lyapunov optimization</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>User experience</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UFFLwzAQLqLgnL4LvgR87kzSJG0fpU432BjIZI8lbS61Y0tm0or796ZueC93B993331fFN0TPCEE50_rTTGhmJJJglNBMbmIRoTzLKaUZZfDnIiY0FRcRzfebzEmqeB8FP2szK41gF5a37m26jtQaKX1zkrVmgZJo1Bh94e-G7Z38LZ3NaClNLKBPZgObdruE00NuOaIZtJ9g_-DauvQDDpwtgEDtvdoOS3iqZHVLijM7fo2utJy5-Hu3MfRx-t0XczixeptXjwv4jpJki6Wgtcix0SB5jnJuNC1qCivgDKllcqYSmmwifNE1krnCvOK4IzJLGcamBDJOHo83T04-9WH78pt8GCCZEkDj2DMMA0ofELVznrvQJcH1-6lO5YEl0O-Zci3HPItz_kGysOJ0gLAPzxnlIVKfgHBYXdI</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Xia, Shichao</creator><creator>Yao, Zhixiu</creator><creator>Li, Yun</creator><creator>Mao, Shiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid><orcidid>https://orcid.org/0000-0003-2418-9736</orcidid><orcidid>https://orcid.org/0000-0001-8477-8845</orcidid></search><sort><creationdate>202110</creationdate><title>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</title><author>Xia, Shichao ; Yao, Zhixiu ; Li, Yun ; Mao, Shiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Artificial intelligence</topic><topic>Batteries</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Edge computing</topic><topic>Energy harvesting</topic><topic>Energy levels</topic><topic>Energy management</topic><topic>Game theory</topic><topic>Internet of Things</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Optimization</topic><topic>perturbed Lyapunov optimization</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>User experience</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Shichao</creatorcontrib><creatorcontrib>Yao, Zhixiu</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Shichao</au><au>Yao, Zhixiu</au><au>Li, Yun</au><au>Mao, Shiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-10</date><risdate>2021</risdate><volume>20</volume><issue>10</issue><spage>6743</spage><epage>6757</epage><pages>6743-6757</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>With the rapid development and convergence of the mobile Internet and the Internet of Things (IoT), computing-intensive and delay-sensitive IoT applications (APPs) are proliferating with an unprecedented speed in recent years. Mobile edge computing (MEC) and energy harvesting (EH) technologies can significantly improve the user experience by offloading computation tasks to edge-cloud servers as well as achieving green and durable operation. Traditional centralized strategies require precise information of system states, which may not be feasible in the era of big data and artificial intelligence. To this end, how to allocate limited edge-cloud computing resource on demand, and how to develop heterogeneous task offloading strategies with EH in a more flexible manner are remaining challenges. In this paper, we investigate an EH-enabled MEC offloading system, and propose an online distributed optimization algorithm based on game theory and perturbed Lyapunov optimization theory. The proposed algorithm works online and jointly determines heterogeneous task offloading, on-demand computing resource allocation, and battery energy management. Furthermore, to reduce the unnecessary communication overhead and improve the processing efficiency, an offloading pre-screening criterion is designed by balancing battery energy level, latency, and revenue. Extensive simulations are carried out to validate the effectiveness and rationality of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3076201</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid><orcidid>https://orcid.org/0000-0003-2418-9736</orcidid><orcidid>https://orcid.org/0000-0001-8477-8845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2021-10, Vol.20 (10), p.6743-6757 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2021_3076201 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applications programs Artificial intelligence Batteries Cloud computing Computation offloading Edge computing Energy harvesting Energy levels Energy management Game theory Internet of Things Mobile computing mobile edge computing Optimization perturbed Lyapunov optimization Resource allocation Resource management Servers Task analysis User experience Wireless communication |
title | Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Distributed%20Offloading%20and%20Computing%20Resource%20Management%20With%20Energy%20Harvesting%20for%20Heterogeneous%20MEC-Enabled%20IoT&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Xia,%20Shichao&rft.date=2021-10&rft.volume=20&rft.issue=10&rft.spage=6743&rft.epage=6757&rft.pages=6743-6757&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3076201&rft_dat=%3Cproquest_cross%3E2580100402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-a65c6901def591856fc6b25be24dfdd84d72558093acdf9d05b1084a894fe4663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580100402&rft_id=info:pmid/&rft_ieee_id=9424444&rfr_iscdi=true |