Loading…

Spinal Codes Over Fading Channel: Error Probability Analysis and Encoding Structure Improvement

In order to facilitate the reliability of data transmission of Spinal codes over the fading channel, performance analysis of Spinal codes is conducted, and an improved encoding structure is proposed. First, we derive an approximate frame error rate (FER) upper bound for Spinal codes over the Rayleig...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2021-12, Vol.20 (12), p.8288-8300
Main Authors: Li, Aimin, Wu, Shaohua, Jiao, Jian, Zhang, Ning, Zhang, Qinyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to facilitate the reliability of data transmission of Spinal codes over the fading channel, performance analysis of Spinal codes is conducted, and an improved encoding structure is proposed. First, we derive an approximate frame error rate (FER) upper bound for Spinal codes over the Rayleigh fading channel in the finite block length (FBL) regime. Then, inspired by the FER analysis process, we propose an improved encoding structure, named self-concatenation structure, to reduce the FER of Spinal codes. In addition, a parallel structure is proposed for Spinal codes to improve the decoding throughput. For the self-concatenation structure, simulation results show that it exhibits a significant gain in anti-noise performance compared with the original Spinal codes over the Rayleigh fading channel. For the parallel structure, we find that by combining the parallel structure with the self-concatenation structure, not only is the encoding and decoding throughput of Spinal codes significantly improved but also the FER of Spinal codes is reduced.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2021.3091719