Loading…
Coordination in a Multi-Cell Multi-Antenna Multi-User W-CDMA System: A Beamforming Approach
The problem of designing joint power control and optimal beamforming (JPCOB) algorithms for the downlink of a coordinated multi-cell WCDMA system is considered throughout this paper. In this case, the JPCOB design is formulated as the problem of minimizing the total transmitted power in the coordina...
Saved in:
Published in: | IEEE transactions on wireless communications 2008-11, Vol.7 (11), p.4479-4485 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of designing joint power control and optimal beamforming (JPCOB) algorithms for the downlink of a coordinated multi-cell WCDMA system is considered throughout this paper. In this case, the JPCOB design is formulated as the problem of minimizing the total transmitted power in the coordinated multi-cell system, subject to a certain quality of service requirement for each user. In this paper, the performance of two JPCOB algorithms based on different beamforming approaches is compared over the coordinated multi-cell system. The first one, obtains local beamformers by means of the well-known virtual uplink-downlink duality. In contrast, the second algorithm implements multi-base beamformers, taking into account match filter equalizers at the receivers. Moreover, realistic system parameters, such as per-base station power constraints or the asynchronous nature of the signals arriving at the receivers, are taken into account. Simulation results show that the algorithm based on multi-base beamforming presents attractive properties, such as an inherent multi-base scheduling technique or a decreasing total transmitted power as the degree of coordination between base stations is increased. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/T-WC.2008.070844 |