Loading…

Theory & Methods: Approximate Identifiability, Moments and Censored Data

It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X < Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y),...

Full description

Saved in:
Bibliographic Details
Published in:Australian & New Zealand journal of statistics 2001-06, Vol.43 (2), p.221-230
Main Author: Berman, Simeon M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3
cites
container_end_page 230
container_issue 2
container_start_page 221
container_title Australian & New Zealand journal of statistics
container_volume 43
creator Berman, Simeon M.
description It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X < Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier.
doi_str_mv 10.1111/1467-842X.00167
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_1467_842X_00167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ANZS167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3</originalsourceid><addsrcrecordid>eNqFkNFPwjAQxhujiYg--9onnxy0a7t1viEokMCUiMHw0pT1FqbASLtE9t9bnOHVe7nL3fe73H0I3VLSoT66lEdxIHn40SGERvEZap06575mURJQHrNLdOXcp5dwwqIWGs3XUNoa3-EpVOvSuAfc2-9teSi2ugI8NrCrirzQq2JTVPU9npZb33FY7wzuw86VFgwe6Epfo4tcbxzc_OU2en9-mvdHweRlOO73JkFGoyQOGE10KICLFWGEyUQTMJzHBCQIIXNpwiykMouMZEIIBiZZkVDneZZHNOEmY23UbfZmtnTOQq721t9qa0WJOhqhjm-r49vq1whP8Ib4LjZQ_ydXvXT51mBBgxWugsMJ0_ZL-Wks1CIdqnTx-DobjGZqyX4A0JVuww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory &amp; Methods: Approximate Identifiability, Moments and Censored Data</title><source>Wiley</source><creator>Berman, Simeon M.</creator><creatorcontrib>Berman, Simeon M.</creatorcontrib><description>It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X &lt; Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/1467-842X.00167</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>censored distribution ; clinical trial ; competing risks ; identifiability ; Kaplan-Meier estimator ; moments ; survival distribution ; Weierstrass Theorem</subject><ispartof>Australian &amp; New Zealand journal of statistics, 2001-06, Vol.43 (2), p.221-230</ispartof><rights>Australian Statistical Publishing Association Inc 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Berman, Simeon M.</creatorcontrib><title>Theory &amp; Methods: Approximate Identifiability, Moments and Censored Data</title><title>Australian &amp; New Zealand journal of statistics</title><description>It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X &lt; Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier.</description><subject>censored distribution</subject><subject>clinical trial</subject><subject>competing risks</subject><subject>identifiability</subject><subject>Kaplan-Meier estimator</subject><subject>moments</subject><subject>survival distribution</subject><subject>Weierstrass Theorem</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkNFPwjAQxhujiYg--9onnxy0a7t1viEokMCUiMHw0pT1FqbASLtE9t9bnOHVe7nL3fe73H0I3VLSoT66lEdxIHn40SGERvEZap06575mURJQHrNLdOXcp5dwwqIWGs3XUNoa3-EpVOvSuAfc2-9teSi2ugI8NrCrirzQq2JTVPU9npZb33FY7wzuw86VFgwe6Epfo4tcbxzc_OU2en9-mvdHweRlOO73JkFGoyQOGE10KICLFWGEyUQTMJzHBCQIIXNpwiykMouMZEIIBiZZkVDneZZHNOEmY23UbfZmtnTOQq721t9qa0WJOhqhjm-r49vq1whP8Ib4LjZQ_ydXvXT51mBBgxWugsMJ0_ZL-Wks1CIdqnTx-DobjGZqyX4A0JVuww</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Berman, Simeon M.</creator><general>Blackwell Publishers Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200106</creationdate><title>Theory &amp; Methods: Approximate Identifiability, Moments and Censored Data</title><author>Berman, Simeon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>censored distribution</topic><topic>clinical trial</topic><topic>competing risks</topic><topic>identifiability</topic><topic>Kaplan-Meier estimator</topic><topic>moments</topic><topic>survival distribution</topic><topic>Weierstrass Theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berman, Simeon M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Australian &amp; New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berman, Simeon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory &amp; Methods: Approximate Identifiability, Moments and Censored Data</atitle><jtitle>Australian &amp; New Zealand journal of statistics</jtitle><date>2001-06</date><risdate>2001</risdate><volume>43</volume><issue>2</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X &lt; Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-842X.00167</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-1473
ispartof Australian & New Zealand journal of statistics, 2001-06, Vol.43 (2), p.221-230
issn 1369-1473
1467-842X
language eng
recordid cdi_crossref_primary_10_1111_1467_842X_00167
source Wiley
subjects censored distribution
clinical trial
competing risks
identifiability
Kaplan-Meier estimator
moments
survival distribution
Weierstrass Theorem
title Theory & Methods: Approximate Identifiability, Moments and Censored Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20&%20Methods:%20Approximate%20Identifiability,%20Moments%20and%20Censored%20Data&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Berman,%20Simeon%20M.&rft.date=2001-06&rft.volume=43&rft.issue=2&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/1467-842X.00167&rft_dat=%3Cwiley_cross%3EANZS167%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true