Loading…
Theory & Methods: Approximate Identifiability, Moments and Censored Data
It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X < Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y),...
Saved in:
Published in: | Australian & New Zealand journal of statistics 2001-06, Vol.43 (2), p.221-230 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3 |
---|---|
cites | |
container_end_page | 230 |
container_issue | 2 |
container_start_page | 221 |
container_title | Australian & New Zealand journal of statistics |
container_volume | 43 |
creator | Berman, Simeon M. |
description | It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X < Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier. |
doi_str_mv | 10.1111/1467-842X.00167 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_1467_842X_00167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ANZS167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3</originalsourceid><addsrcrecordid>eNqFkNFPwjAQxhujiYg--9onnxy0a7t1viEokMCUiMHw0pT1FqbASLtE9t9bnOHVe7nL3fe73H0I3VLSoT66lEdxIHn40SGERvEZap06575mURJQHrNLdOXcp5dwwqIWGs3XUNoa3-EpVOvSuAfc2-9teSi2ugI8NrCrirzQq2JTVPU9npZb33FY7wzuw86VFgwe6Epfo4tcbxzc_OU2en9-mvdHweRlOO73JkFGoyQOGE10KICLFWGEyUQTMJzHBCQIIXNpwiykMouMZEIIBiZZkVDneZZHNOEmY23UbfZmtnTOQq721t9qa0WJOhqhjm-r49vq1whP8Ib4LjZQ_ydXvXT51mBBgxWugsMJ0_ZL-Wks1CIdqnTx-DobjGZqyX4A0JVuww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory & Methods: Approximate Identifiability, Moments and Censored Data</title><source>Wiley</source><creator>Berman, Simeon M.</creator><creatorcontrib>Berman, Simeon M.</creatorcontrib><description>It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X < Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/1467-842X.00167</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>censored distribution ; clinical trial ; competing risks ; identifiability ; Kaplan-Meier estimator ; moments ; survival distribution ; Weierstrass Theorem</subject><ispartof>Australian & New Zealand journal of statistics, 2001-06, Vol.43 (2), p.221-230</ispartof><rights>Australian Statistical Publishing Association Inc 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Berman, Simeon M.</creatorcontrib><title>Theory & Methods: Approximate Identifiability, Moments and Censored Data</title><title>Australian & New Zealand journal of statistics</title><description>It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X < Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier.</description><subject>censored distribution</subject><subject>clinical trial</subject><subject>competing risks</subject><subject>identifiability</subject><subject>Kaplan-Meier estimator</subject><subject>moments</subject><subject>survival distribution</subject><subject>Weierstrass Theorem</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkNFPwjAQxhujiYg--9onnxy0a7t1viEokMCUiMHw0pT1FqbASLtE9t9bnOHVe7nL3fe73H0I3VLSoT66lEdxIHn40SGERvEZap06575mURJQHrNLdOXcp5dwwqIWGs3XUNoa3-EpVOvSuAfc2-9teSi2ugI8NrCrirzQq2JTVPU9npZb33FY7wzuw86VFgwe6Epfo4tcbxzc_OU2en9-mvdHweRlOO73JkFGoyQOGE10KICLFWGEyUQTMJzHBCQIIXNpwiykMouMZEIIBiZZkVDneZZHNOEmY23UbfZmtnTOQq721t9qa0WJOhqhjm-r49vq1whP8Ib4LjZQ_ydXvXT51mBBgxWugsMJ0_ZL-Wks1CIdqnTx-DobjGZqyX4A0JVuww</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Berman, Simeon M.</creator><general>Blackwell Publishers Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200106</creationdate><title>Theory & Methods: Approximate Identifiability, Moments and Censored Data</title><author>Berman, Simeon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>censored distribution</topic><topic>clinical trial</topic><topic>competing risks</topic><topic>identifiability</topic><topic>Kaplan-Meier estimator</topic><topic>moments</topic><topic>survival distribution</topic><topic>Weierstrass Theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berman, Simeon M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Australian & New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berman, Simeon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory & Methods: Approximate Identifiability, Moments and Censored Data</atitle><jtitle>Australian & New Zealand journal of statistics</jtitle><date>2001-06</date><risdate>2001</risdate><volume>43</volume><issue>2</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>It is well known that the joint distribution of a pair of random variables (X,Y) is not identifiable on the basis of the joint distribution of the function (min (X,Y), 1[X < Y]). This paper introduces the concept of approximate identifiability and studies its relevance to the function (min (X,Y), Y). It shows that the distribution of (X,Y) is approximately identifiable on the basis of the distribution of (min (X,Y), Y). The identification is explicitly executed by a method of moments. The method is applied to the analysis of censored distributions arising in the theory of clinical trials and is compared to the standard method of Kaplan and Meier.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-842X.00167</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-1473 |
ispartof | Australian & New Zealand journal of statistics, 2001-06, Vol.43 (2), p.221-230 |
issn | 1369-1473 1467-842X |
language | eng |
recordid | cdi_crossref_primary_10_1111_1467_842X_00167 |
source | Wiley |
subjects | censored distribution clinical trial competing risks identifiability Kaplan-Meier estimator moments survival distribution Weierstrass Theorem |
title | Theory & Methods: Approximate Identifiability, Moments and Censored Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20&%20Methods:%20Approximate%20Identifiability,%20Moments%20and%20Censored%20Data&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Berman,%20Simeon%20M.&rft.date=2001-06&rft.volume=43&rft.issue=2&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/1467-842X.00167&rft_dat=%3Cwiley_cross%3EANZS167%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1697-319a25e45b030389a0ed4470e8e558f8d2c218c6d835553ed9b02affcf6194dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |