Loading…
Analysis of longitudinal data with non-ignorable non-monotone missing values
A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability...
Saved in:
Published in: | Applied statistics 1998, Vol.47 (3), p.425-438 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23 |
---|---|
cites | |
container_end_page | 438 |
container_issue | 3 |
container_start_page | 425 |
container_title | Applied statistics |
container_volume | 47 |
creator | Troxel, A. B. Harrington, D. P. Lipsitz, S. R. |
description | A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time. |
doi_str_mv | 10.1111/1467-9876.00119 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_1467_9876_00119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2986107</jstor_id><sourcerecordid>2986107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23</originalsourceid><addsrcrecordid>eNqFUM9PwjAUbowmInr24mEHr4O269r1SEDQBDWKRm5Nt7VYHK1ph8h_72AGj77Ly_t-Je8D4BLBHmqmjwhlMc8Y7UGIED8CnQNyDDoQJmnMcUpOwVkIS9gMgqQDpgMrq20wIXI6qpxdmHpdmgaLSlnLaGPq98g6G5uFdV7mldpfK2dd7ayKViYEYxfRl6zWKpyDEy2roC5-dxe8jm9ehrfx9HFyNxxM44KghMcs07qECPNCQ4qJkrosMqxLIinNsKKaEgozklAl04xhTRXNi1wTiKnWucJJF_Tb3MK7ELzS4tOblfRbgaDYlSF2r4vd62JfRuO4bh2fMhSy0l7awoSDDZOEU0wbGWllG1Op7X-p4nk2G7bpV61tGWrn_1J5RhFkDR23tAm1-j7Q0n8IyhKWireHiXiaj-ZsPLoXPPkBEyeHjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of longitudinal data with non-ignorable non-monotone missing values</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Troxel, A. B. ; Harrington, D. P. ; Lipsitz, S. R.</creator><creatorcontrib>Troxel, A. B. ; Harrington, D. P. ; Lipsitz, S. R.</creatorcontrib><description>A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/1467-9876.00119</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Confidence interval ; Estimation bias ; Exact sciences and technology ; Health outcomes ; Incomplete data ; Longitudinal data ; Markov correlation ; Mathematics ; Maximum likelihood ; Maximum likelihood estimation ; Missing data ; Modeling ; Multivariate analysis ; Nonparametric inference ; Parametric models ; Probability and statistics ; Quality of life ; Repeated measurements ; Sciences and techniques of general use ; Standard error ; Statistics</subject><ispartof>Applied statistics, 1998, Vol.47 (3), p.425-438</ispartof><rights>Copyright 1998 The Royal Statistical Society</rights><rights>1998 Royal Statistical Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2986107$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2986107$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2439626$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Troxel, A. B.</creatorcontrib><creatorcontrib>Harrington, D. P.</creatorcontrib><creatorcontrib>Lipsitz, S. R.</creatorcontrib><title>Analysis of longitudinal data with non-ignorable non-monotone missing values</title><title>Applied statistics</title><description>A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time.</description><subject>Confidence interval</subject><subject>Estimation bias</subject><subject>Exact sciences and technology</subject><subject>Health outcomes</subject><subject>Incomplete data</subject><subject>Longitudinal data</subject><subject>Markov correlation</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Quality of life</subject><subject>Repeated measurements</subject><subject>Sciences and techniques of general use</subject><subject>Standard error</subject><subject>Statistics</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFUM9PwjAUbowmInr24mEHr4O269r1SEDQBDWKRm5Nt7VYHK1ph8h_72AGj77Ly_t-Je8D4BLBHmqmjwhlMc8Y7UGIED8CnQNyDDoQJmnMcUpOwVkIS9gMgqQDpgMrq20wIXI6qpxdmHpdmgaLSlnLaGPq98g6G5uFdV7mldpfK2dd7ayKViYEYxfRl6zWKpyDEy2roC5-dxe8jm9ehrfx9HFyNxxM44KghMcs07qECPNCQ4qJkrosMqxLIinNsKKaEgozklAl04xhTRXNi1wTiKnWucJJF_Tb3MK7ELzS4tOblfRbgaDYlSF2r4vd62JfRuO4bh2fMhSy0l7awoSDDZOEU0wbGWllG1Op7X-p4nk2G7bpV61tGWrn_1J5RhFkDR23tAm1-j7Q0n8IyhKWireHiXiaj-ZsPLoXPPkBEyeHjQ</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Troxel, A. B.</creator><creator>Harrington, D. P.</creator><creator>Lipsitz, S. R.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1998</creationdate><title>Analysis of longitudinal data with non-ignorable non-monotone missing values</title><author>Troxel, A. B. ; Harrington, D. P. ; Lipsitz, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Confidence interval</topic><topic>Estimation bias</topic><topic>Exact sciences and technology</topic><topic>Health outcomes</topic><topic>Incomplete data</topic><topic>Longitudinal data</topic><topic>Markov correlation</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Quality of life</topic><topic>Repeated measurements</topic><topic>Sciences and techniques of general use</topic><topic>Standard error</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troxel, A. B.</creatorcontrib><creatorcontrib>Harrington, D. P.</creatorcontrib><creatorcontrib>Lipsitz, S. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troxel, A. B.</au><au>Harrington, D. P.</au><au>Lipsitz, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of longitudinal data with non-ignorable non-monotone missing values</atitle><jtitle>Applied statistics</jtitle><date>1998</date><risdate>1998</risdate><volume>47</volume><issue>3</issue><spage>425</spage><epage>438</epage><pages>425-438</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9876.00119</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Applied statistics, 1998, Vol.47 (3), p.425-438 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_crossref_primary_10_1111_1467_9876_00119 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; JSTOR Archival Journals and Primary Sources Collection |
subjects | Confidence interval Estimation bias Exact sciences and technology Health outcomes Incomplete data Longitudinal data Markov correlation Mathematics Maximum likelihood Maximum likelihood estimation Missing data Modeling Multivariate analysis Nonparametric inference Parametric models Probability and statistics Quality of life Repeated measurements Sciences and techniques of general use Standard error Statistics |
title | Analysis of longitudinal data with non-ignorable non-monotone missing values |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20longitudinal%20data%20with%20non-ignorable%20non-monotone%20missing%20values&rft.jtitle=Applied%20statistics&rft.au=Troxel,%20A.%20B.&rft.date=1998&rft.volume=47&rft.issue=3&rft.spage=425&rft.epage=438&rft.pages=425-438&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/1467-9876.00119&rft_dat=%3Cjstor_cross%3E2986107%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2986107&rfr_iscdi=true |