Loading…

Analysis of longitudinal data with non-ignorable non-monotone missing values

A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability...

Full description

Saved in:
Bibliographic Details
Published in:Applied statistics 1998, Vol.47 (3), p.425-438
Main Authors: Troxel, A. B., Harrington, D. P., Lipsitz, S. R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23
cites
container_end_page 438
container_issue 3
container_start_page 425
container_title Applied statistics
container_volume 47
creator Troxel, A. B.
Harrington, D. P.
Lipsitz, S. R.
description A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time.
doi_str_mv 10.1111/1467-9876.00119
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_1467_9876_00119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2986107</jstor_id><sourcerecordid>2986107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23</originalsourceid><addsrcrecordid>eNqFUM9PwjAUbowmInr24mEHr4O269r1SEDQBDWKRm5Nt7VYHK1ph8h_72AGj77Ly_t-Je8D4BLBHmqmjwhlMc8Y7UGIED8CnQNyDDoQJmnMcUpOwVkIS9gMgqQDpgMrq20wIXI6qpxdmHpdmgaLSlnLaGPq98g6G5uFdV7mldpfK2dd7ayKViYEYxfRl6zWKpyDEy2roC5-dxe8jm9ehrfx9HFyNxxM44KghMcs07qECPNCQ4qJkrosMqxLIinNsKKaEgozklAl04xhTRXNi1wTiKnWucJJF_Tb3MK7ELzS4tOblfRbgaDYlSF2r4vd62JfRuO4bh2fMhSy0l7awoSDDZOEU0wbGWllG1Op7X-p4nk2G7bpV61tGWrn_1J5RhFkDR23tAm1-j7Q0n8IyhKWireHiXiaj-ZsPLoXPPkBEyeHjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of longitudinal data with non-ignorable non-monotone missing values</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Troxel, A. B. ; Harrington, D. P. ; Lipsitz, S. R.</creator><creatorcontrib>Troxel, A. B. ; Harrington, D. P. ; Lipsitz, S. R.</creatorcontrib><description>A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/1467-9876.00119</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Confidence interval ; Estimation bias ; Exact sciences and technology ; Health outcomes ; Incomplete data ; Longitudinal data ; Markov correlation ; Mathematics ; Maximum likelihood ; Maximum likelihood estimation ; Missing data ; Modeling ; Multivariate analysis ; Nonparametric inference ; Parametric models ; Probability and statistics ; Quality of life ; Repeated measurements ; Sciences and techniques of general use ; Standard error ; Statistics</subject><ispartof>Applied statistics, 1998, Vol.47 (3), p.425-438</ispartof><rights>Copyright 1998 The Royal Statistical Society</rights><rights>1998 Royal Statistical Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2986107$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2986107$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2439626$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Troxel, A. B.</creatorcontrib><creatorcontrib>Harrington, D. P.</creatorcontrib><creatorcontrib>Lipsitz, S. R.</creatorcontrib><title>Analysis of longitudinal data with non-ignorable non-monotone missing values</title><title>Applied statistics</title><description>A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time.</description><subject>Confidence interval</subject><subject>Estimation bias</subject><subject>Exact sciences and technology</subject><subject>Health outcomes</subject><subject>Incomplete data</subject><subject>Longitudinal data</subject><subject>Markov correlation</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Quality of life</subject><subject>Repeated measurements</subject><subject>Sciences and techniques of general use</subject><subject>Standard error</subject><subject>Statistics</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFUM9PwjAUbowmInr24mEHr4O269r1SEDQBDWKRm5Nt7VYHK1ph8h_72AGj77Ly_t-Je8D4BLBHmqmjwhlMc8Y7UGIED8CnQNyDDoQJmnMcUpOwVkIS9gMgqQDpgMrq20wIXI6qpxdmHpdmgaLSlnLaGPq98g6G5uFdV7mldpfK2dd7ayKViYEYxfRl6zWKpyDEy2roC5-dxe8jm9ehrfx9HFyNxxM44KghMcs07qECPNCQ4qJkrosMqxLIinNsKKaEgozklAl04xhTRXNi1wTiKnWucJJF_Tb3MK7ELzS4tOblfRbgaDYlSF2r4vd62JfRuO4bh2fMhSy0l7awoSDDZOEU0wbGWllG1Op7X-p4nk2G7bpV61tGWrn_1J5RhFkDR23tAm1-j7Q0n8IyhKWireHiXiaj-ZsPLoXPPkBEyeHjQ</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Troxel, A. B.</creator><creator>Harrington, D. P.</creator><creator>Lipsitz, S. R.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1998</creationdate><title>Analysis of longitudinal data with non-ignorable non-monotone missing values</title><author>Troxel, A. B. ; Harrington, D. P. ; Lipsitz, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Confidence interval</topic><topic>Estimation bias</topic><topic>Exact sciences and technology</topic><topic>Health outcomes</topic><topic>Incomplete data</topic><topic>Longitudinal data</topic><topic>Markov correlation</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Quality of life</topic><topic>Repeated measurements</topic><topic>Sciences and techniques of general use</topic><topic>Standard error</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troxel, A. B.</creatorcontrib><creatorcontrib>Harrington, D. P.</creatorcontrib><creatorcontrib>Lipsitz, S. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troxel, A. B.</au><au>Harrington, D. P.</au><au>Lipsitz, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of longitudinal data with non-ignorable non-monotone missing values</atitle><jtitle>Applied statistics</jtitle><date>1998</date><risdate>1998</risdate><volume>47</volume><issue>3</issue><spage>425</spage><epage>438</epage><pages>425-438</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>A full likelihood method is proposed to analyse continuous longitudinal data with nonignorable (informative) missing values and non-monotone patterns. The problem arose in a breast cancer clinical trial where repeated assessments of quality of life were collected: patients rated their coping ability during and after treatment. We allow the missingness probabilities to depend on unobserved responses, and we use a multivariate normal model for the outcomes. A first-order Markov dependence structure for the responses is a natural choice and facilitates the construction of the likelihood; estimates are obtained via the Nelder-Mead simplex algorithm. Computations are difficult and become intractable with more than three or four assessments. Applying the method to the quality-of-life data results in easily interpretable estimates, confirms the suspicion that the data are non-ignorably missing and highlights the likely bias of standard methods. Although treatment comparisons are not affected here, the methods are useful for obtaining unbiased means and estimating trends over time.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9876.00119</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Applied statistics, 1998, Vol.47 (3), p.425-438
issn 0035-9254
1467-9876
language eng
recordid cdi_crossref_primary_10_1111_1467_9876_00119
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; JSTOR Archival Journals and Primary Sources Collection
subjects Confidence interval
Estimation bias
Exact sciences and technology
Health outcomes
Incomplete data
Longitudinal data
Markov correlation
Mathematics
Maximum likelihood
Maximum likelihood estimation
Missing data
Modeling
Multivariate analysis
Nonparametric inference
Parametric models
Probability and statistics
Quality of life
Repeated measurements
Sciences and techniques of general use
Standard error
Statistics
title Analysis of longitudinal data with non-ignorable non-monotone missing values
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20longitudinal%20data%20with%20non-ignorable%20non-monotone%20missing%20values&rft.jtitle=Applied%20statistics&rft.au=Troxel,%20A.%20B.&rft.date=1998&rft.volume=47&rft.issue=3&rft.spage=425&rft.epage=438&rft.pages=425-438&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/1467-9876.00119&rft_dat=%3Cjstor_cross%3E2986107%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4139-78ffd0129cf0624eafdc82fd4a6682e6f64608436ea5872f6e6bcbf4026ffbe23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2986107&rfr_iscdi=true