Loading…

Reduction of Elevated Cytokine Levels in A cute/ A cute‐on‐Chronic Liver Failure Using Super‐Large Pore Albumin Dialysis Treatment: An In Vitro Study

The removal of small water soluble toxins and albumin‐bound toxins in acute liver failure patients ( ALF ) or acute‐on‐chronic liver failure ( AocLF ) patients has been established using extracorporeal liver support devices (e.g. M olecular A dsorbents R ecirculating S ystem; MARS ). However, reduct...

Full description

Saved in:
Bibliographic Details
Published in:Therapeutic apheresis and dialysis 2014-08, Vol.18 (4), p.347-352
Main Authors: Dominik, Adrian, Stange, Jan, Pfensig, Claudia, Borufka, Luise, Weiss‐Reining, Helga, Eggert, Martin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The removal of small water soluble toxins and albumin‐bound toxins in acute liver failure patients ( ALF ) or acute‐on‐chronic liver failure ( AocLF ) patients has been established using extracorporeal liver support devices (e.g. M olecular A dsorbents R ecirculating S ystem; MARS ). However, reduction of elevated cytokines in ALF / AocLF using MARS is still not efficient enough to lower patients' serum cytokine levels. New membranes with larger pores or higher cut‐offs should be considered in extracorporeal liver support devices based on albumin dialysis in order to address these problems, as the introduction of super‐large pore membranes could counterbalance high production rates of cytokines and further improve detoxification in vivo. Using an established in vitro two compartment albumin dialysis model, three novel membranes of different pore sizes were compared with the MARS Flux membrane for cytokine removal and detoxification qualities in vitro. Comparing the membranes, no improvement in the removal of water soluble toxins was found. Albumin‐bound toxins were removed more efficiently using novel large ( E mic2) to super‐large pore sized membranes ( S20 ; HCO G ambro). Clearance of cytokines IL ‐6 and tumor necrosis factor‐α was drastically improved using super‐large pore membranes. The Emic2 membrane predominantly removed IL ‐6. In vitro data suggest that the usage of larger pore sized membranes in albumin dialysis can efficiently reduce elevated cytokine levels and liver failure toxins. Using large to super‐large pore membranes might exert effects on patients' serum cytokine levels. Combined with increased detoxification this could lead to higher survival in ALF / AocLF . Promising membranes for clinical evaluation have been identified.
ISSN:1744-9979
1744-9987
DOI:10.1111/1744-9987.12146