Loading…

Phase 1 and preclinical profiling of ESM‐HDAC391, a myeloid‐targeted histone deacetylase inhibitor, shows enhanced pharmacology and monocytopaenia

Aims To improve the tolerability and therapeutic application of histone deacetylase inhibitors (HDACi), by application of an esterase‐sensitive motif (ESM), to target pharmacological activity directly to mononuclear myeloid cells expressing the processing enzyme carboxylesterase‐1 (CES1). Methods Th...

Full description

Saved in:
Bibliographic Details
Published in:British journal of clinical pharmacology 2022-12, Vol.88 (12), p.5238-5256
Main Authors: Furze, Rebecca C., Molnar, Judit, Parr, Nigel J., Ahmad, Faiz, Henry, Yvette, Howe, David, Singh, Rajendra, Toal, Martin, Bassil, Anna K., Bernard, Sharon G., Davis, Robert P., Gibson, Adele, Maller, N. Claire, Sharp, Catriona, Tough, David F., Prinjha, Rab K., Lewis, Huw D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims To improve the tolerability and therapeutic application of histone deacetylase inhibitors (HDACi), by application of an esterase‐sensitive motif (ESM), to target pharmacological activity directly to mononuclear myeloid cells expressing the processing enzyme carboxylesterase‐1 (CES1). Methods This first‐in‐human study comprised single and multiple ascending dose cohorts to determine safety and tolerability. Pharmacodynamic parameters included acetylation, cytokine inhibition and intracellular concentrations of processed acid metabolite in isolated monocytes. Mechanistic work was conducted in vitro and in a CES1/Es1elo mouse strain. Results ESM‐HDAC391 showed transient systemic exposure (plasma half‐life of 21–30 min) but selective retention of processed acid for at least 12 hours, resulting in robust targeted mechanistic engagement (increased acetylation in monocytes plus inhibition of ex vivo stimulated cytokine production). ESM‐HDAC391 was well tolerated and clinical toxicities common to non‐targeted HDACi were not observed. ESM‐HDAC391 treatment was accompanied by the novel finding of a dose‐dependent monocyte depletion that was transient and reversible and which plateaued at 0.06 × 109 monocytes/L after repeat dosing with 20 or 40 mg. Characterisation of monocyte depletion in transgenic mice (CES1/Es1elo) suggested that colony stimulating factor 1 receptor loss on circulating cells contributed to ESM‐HDAC‐mediated depletion. Further mechanistic investigations using human monocytes in vitro demonstrated HDACi‐mediated change in myeloid fate through modulation of colony stimulating factor 1 receptor and downstream effects on cell differentiation. Conclusion These findings demonstrate selective targeting of monocytes in humans using the ESM approach and identify monocytopaenia as a novel outcome of ESM‐HDACi treatment, with implications for potential benefit of these molecules in myeloid‐driven diseases.
ISSN:0306-5251
1365-2125
DOI:10.1111/bcp.15428