Loading…
Mechanical, Tribological, and Thermal Properties of Hot‐Pressed Z r B 2 ‐ B 4 C Composite
The effect of addition of submicrometer‐sized B 4 C (5,10 and 15 wt%) on microstructure, phase composition, hardness, fracture toughness, scratch resistance, wear resistance, and thermal behavior of hot‐pressed Z r B 2 ‐ B 4 C composites is reported. Z r B 2 ‐ B 4 C (10 wt%) composite has V H 1 of 2...
Saved in:
Published in: | International journal of applied ceramic technology 2015-05, Vol.12 (3), p.568-576 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of addition of submicrometer‐sized
B
4
C
(5,10 and 15 wt%) on microstructure, phase composition, hardness, fracture toughness, scratch resistance, wear resistance, and thermal behavior of hot‐pressed
Z
r
B
2
‐
B
4
C
composites is reported.
Z
r
B
2
‐
B
4
C
(10 wt%) composite has
V
H
1
of 20.81
GP
a and fracture toughness of 3.93 at 1 kgf, scratch resistance coefficient of 0.40, wear resistance coefficient of 0.01, and ware rate of 0.49 × 10
−3
mm
3
/Nm at 10N. Crack deflection by homogeneously dispersed submicrometer‐sized
B
4
C
in
Z
r
B
2
matrix can improve the mechanical and tribological properties. Thermal conductivity of
Z
r
B
2
‐
B
4
C
composites varied from 70.13 to 45.30 W/m K between 100°C and 1000°C which is encouraging for making ultra‐high temperature ceramics (
UHTC
) component. |
---|---|
ISSN: | 1546-542X 1744-7402 |
DOI: | 10.1111/ijac.12290 |